The Curious Case of Fluorination of Conjugated Polymers for Solar Cells

被引:335
作者
Zhang, Qianqian [1 ]
Kelly, Mary Allison [1 ]
Bauer, Nicole [1 ]
You, Wei [1 ,2 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Chem, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Appl Phys Sci, CB 3216, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
ENHANCE PHOTOVOLTAIC PERFORMANCE; BAND-GAP POLYMERS; SEMICONDUCTING POLYMERS; ELECTRONIC-PROPERTIES; EFFICIENCY; COPOLYMERS; MORPHOLOGY; ENABLES; BENZODITHIOPHENE; SUBSTITUENTS;
D O I
10.1021/acs.accounts.7b00326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donoracceptor (DA)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for DA polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with over-fluorination, i.e., when too many fluorine substituents are incorporated. Finally, while this Account focuses on studies in which the polymer is paired with fullerene derivatives as the electron accepting materials, non-fullerene acceptors (NFAs) are quickly becoming key players in the field of OSCs. The effect of fluorination of the polymers on the device performance may be different when NFAs are used as the electron-accepting materials, which remains to be investigated. However, the design of fluorinated polymers may provide guidelines for the design of more efficient NFAs. Indeed, the current highest-performing OSC (similar to 13%) features fluorination on both the donor polymer and the non-fullerene acceptor.
引用
收藏
页码:2401 / 2409
页数:9
相关论文
共 47 条
[1]   Effect of Fluorination on the Properties of a Donor-Acceptor Copolymer for Use in Photovoltaic Cells and Transistors [J].
Bronstein, Hugo ;
Frost, Jarvist M. ;
Hadipour, Afshin ;
Kim, Youngju ;
Nielsen, Christian B. ;
Ashraf, Raja Shahid ;
Rand, Barry P. ;
Watkins, Scott ;
McCulloch, Iain .
CHEMISTRY OF MATERIALS, 2013, 25 (03) :277-285
[2]   Efficient polymer solar cells based on a new benzo[1,2-b:4,5-b′]dithiophene derivative with fluorinated alkoxyphenyl side chain [J].
Chen, Weichao ;
Du, Zhengkun ;
Han, Liangliang ;
Xiao, Manjun ;
Shen, Wenfei ;
Wang, Ting ;
Zhou, Yuanhang ;
Yang, Renqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) :3130-3135
[3]   Increased Exciton Dipole Moment Translates into Charge-Transfer Excitons in Thiophene-Fluorinated Low-Bandgap Polymers for Organic Photovoltaic Applications [J].
Collado-Fregoso, Elisa ;
Boufflet, Pierre ;
Fei, Zhuping ;
Gann, Eliot ;
Ashraf, Shahid ;
Li, Zhe ;
McNeill, Christopher R. ;
Durrant, James R. ;
Heeney, Martin .
CHEMISTRY OF MATERIALS, 2015, 27 (23) :7934-7944
[4]   Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells [J].
Dai, Shuixing ;
Zhao, Fuwen ;
Zhang, Qianqian ;
Lau, Tsz-Ki ;
Li, Tengfei ;
Liu, Kuan ;
Ling, Qidan ;
Wang, Chunru ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1336-1343
[5]   Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells [J].
Deng, Yunfeng ;
Liu, Jian ;
Wang, Jiantai ;
Liu, Lihui ;
Li, Weili ;
Tian, Hongkun ;
Zhang, Xiaojie ;
Xie, Zhiyuan ;
Geng, Yanhou ;
Wang, Fosong .
ADVANCED MATERIALS, 2014, 26 (03) :471-476
[6]   Thiophene fluorination to enhance photovoltaic performance in low band gap donor-acceptor polymers [J].
Fei, Zhuping ;
Shahid, Munazza ;
Yaacobi-Gross, Nir ;
Rossbauer, Stephan ;
Zhong, Hongliang ;
Watkins, Scott E. ;
Anthopoulos, Thomas D. ;
Heeney, Martin .
CHEMICAL COMMUNICATIONS, 2012, 48 (90) :11130-11132
[7]   Insights into the influence of fluorination positions on polymer donor materials on photovoltaic performance [J].
Gong, Xue ;
Li, Guangwu ;
Chen, Jianya ;
Feng, Shiyu ;
Ma, Danyang ;
Hou, Ran ;
Li, Cuihong ;
Ma, Wei ;
Bo, Zhishan .
ORGANIC ELECTRONICS, 2017, 46 :115-120
[8]   Quinoxaline-Based Semiconducting Polymers: Effect of Fluorination on the Photophysical, Thermal, and Charge Transport Properties [J].
Iyer, Akila ;
Bjorgaard, Josiah ;
Anderson, Trent ;
Koese, Muhammet E. .
MACROMOLECULES, 2012, 45 (16) :6380-6389
[9]   Fluorination of Polythiophene Derivatives for High Performance Organic Photovoltaics [J].
Jo, Jea Woong ;
Jung, Jae Woong ;
Wang, Hsin-Wei ;
Kim, Paul ;
Russell, Thomas P. ;
Jo, Won Ho .
CHEMISTRY OF MATERIALS, 2014, 26 (14) :4214-4220
[10]   Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in NaphthobisthiadiazoleBased Semiconducting Polymers [J].
Kawashima, Kazuaki ;
Fukuhara, Tomohiro ;
Suda, Yousuke ;
Suzuki, Yasuhito ;
Koganezawa, Tomoyuki ;
Yoshida, Hiroyuki ;
Ohkita, Hideo ;
Osaka, Itaru ;
Takimiya, Kazuo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (32) :10265-10275