Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and waterlogging

被引:51
作者
Bramley, H.
Turner, D. W.
Tyerman, S. D.
Turner, N. C.
机构
[1] Univ Adelaide, Plant Res Ctr, Fac Agr Food & Wine, Glen Osmond, SA 5064, Australia
[2] Univ Western Australia, Fac Nat & Agr Sci, Sch Plant Biol, Crawley, WA 6009, Australia
[3] Univ Western Australia, Ctr Legumes Mediterranean Agr, Crawley, WA 6009, Australia
来源
ADVANCES IN AGRONOMY, VOL 96 | 2007年 / 96卷
关键词
D O I
10.1016/S0065-2113(07)96002-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The hydraulic properties of plant roots depend on the morphology and anatomy of the root system, the length of the absorbing region and the influence of aquaporins (AQPs). These features change during development and in response to environmental stimuli, and alter the hydraulic conductivity of the root system (Lpr). AQPs are proteins that form water selective channels to facilitate water flow across membranes. A large proportion of AQP isoforms are predominantly expressed in roots and their localization indicates a putative role in the transport of water across the root. AQP activity can finely regulate the rate of water flow across the root by changes in abundance and opening/closing the water channels. Since water will flow by the pathway of least resistance, AQPs will only influence radial water flow if the hydraulic conductivity of the apoplast is relatively less than that of the cell-to-cell pathway. There is growing evidence that AQPs influence water flow through the roots of some, but not all, species. Waterlogging is a significant environmental constraint to crop growth, but its influence on Lpr is poorly understood. Depending on the tolerance of the species, waterlogging through oxygen deficiency reduces root growth and tends to reduce Lpr. Oxygen deficiency can directly or indirectly close AQPs or alter their abundance. Changes in AQP activity may be the key component which ultimately influences water transport through waterlogged roots. © 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:133 / 196
页数:64
相关论文
共 283 条
[1]   Isolation and transcription profiling of low-O2 stress-associated cDNA clones from the flooding-stress-tolerant FR13A rice genotype [J].
Agarwal, S ;
Grover, A .
ANNALS OF BOTANY, 2005, 96 (05) :831-844
[2]   Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress [J].
Aharon, R ;
Shahak, Y ;
Wininger, S ;
Bendov, R ;
Kapulnik, Y ;
Galili, G .
PLANT CELL, 2003, 15 (02) :439-447
[3]   Whole gene family expression and drought stress regulation of aquaporins [J].
Alexandersson, E ;
Fraysse, L ;
Sjövall-Larsen, S ;
Gustavsson, S ;
Fellert, M ;
Karlsson, M ;
Johanson, U ;
Kjellbom, P .
PLANT MOLECULAR BIOLOGY, 2005, 59 (03) :469-484
[4]   Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations [J].
Alleva, K ;
Niemietz, CM ;
Maurel, C ;
Parisi, M ;
Tyerman, SD ;
Amodeo, G .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (03) :609-621
[5]   Protoplasmic pH modifies water and solute transfer in Beta vulgaris root vacuoles [J].
Amodeo, G ;
Sutka, M ;
Dorr, R ;
Parisi, M .
JOURNAL OF MEMBRANE BIOLOGY, 2002, 187 (03) :175-184
[6]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[7]   Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:: a microelectrode and modelling study with Phragmites australis [J].
Armstrong, W ;
Cousins, D ;
Armstrong, J ;
Turner, DW ;
Beckett, PM .
ANNALS OF BOTANY, 2000, 86 (03) :687-703
[8]  
Armstrong W., 1991, Plant Life Under Oxygen Deprivation, P267
[9]   The role of Aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots [J].
Aroca, R ;
Amodeo, G ;
Fernández-Illescas, S ;
Herman, EM ;
Chaumont, F ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 2005, 137 (01) :341-353
[10]   Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants [J].
Aroca, Ricardo ;
Ferrante, Antonio ;
Vernieri, Paolo ;
Chrispeels, Maarten J. .
ANNALS OF BOTANY, 2006, 98 (06) :1301-1310