Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature

被引:276
作者
Chen, WM
Moulin, L
Bontemps, C
Vandamme, P
Béna, G
Boivin-Masson, C
机构
[1] INRA, CNRS, Lab Interact Plantes Microorganismes, F-31326 Castanet Tolosan, France
[2] Natl Kaohsiung Inst Marine Technol, Dept Seafood Sci, Microbiol Lab, Kaohsiung 811, Taiwan
[3] ENSAM, CIRAD, INRA, IRD,LSTM, F-34398 Montpellier, France
[4] State Univ Ghent, Microbiol Lab, B-9000 Ghent, Belgium
关键词
D O I
10.1128/JB.185.24.7266-7272.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Following the initial discovery of two legume-nodulating Burkholderia strains (L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-Masson, Nature 411:948-950, 2001), we identified as nitrogen-fixing legume symbionts at least 50 different strains of Burkholderia caribensis and Ralstonia taiwanensis, all belonging to the beta-subclass of proteobacteria, thus extending the phylogenetic diversity of the rhizobia. R. taiwanensis was found to represent 93% of the Mimosa isolates in Taiwan, indicating that beta-proteobacteria can be the specific symbionts of a legume. The nod genes of rhizobial beta-proteobacteria (beta-rhizobia) are very similar to those of rhizobia from the alpha-subclass (alpha-rhizobia), strongly supporting the hypothesis of the unique origin of common nod genes. The beta-rhizobial nod genes are located on a 0.5-Mb plasmid, together with the nifH gene, in R. taiwanensis and Burkholderia phymatum. Phylogenetic analysis of available nodA gene sequences clustered beta-rhizobial sequences in two nodA lineages intertwined with alpha-rhizobial sequences. On the other hand, the beta-rhizobia were grouped with free-living nitrogen-fixing beta-proteobacteria on the basis of the nifH phylogenetic tree. These findings suggest that beta-rhizobia evolved from diazotrophs through multiple lateral nod gene transfers.
引用
收藏
页码:7266 / 7272
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1998, RHIZOBIACEAE
[2]   Ralstonia taiwanensis sp nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient [J].
Chen, WM ;
Laevens, S ;
Lee, TM ;
Coenye, T ;
De Vos, P ;
Mergeay, M ;
Vandamme, P .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :1729-1735
[3]  
CHEN WM, IN PRESS MOL PLANT M
[4]  
DESCHODT C C, 1976, Phytophylactica, V8, P103
[5]  
Fani R, 2000, J MOL EVOL, V51, P1
[6]   CASES IN WHICH PARSIMONY OR COMPATIBILITY METHODS WILL BE POSITIVELY MISLEADING [J].
FELSENSTEIN, J .
SYSTEMATIC ZOOLOGY, 1978, 27 (04) :401-410
[7]  
Felsenstein J., 1993, PHYLIP PHYLOGENY INF
[8]   The composite genome of the legume symbiont Sinorhizobium meliloti [J].
Galibert, F ;
Finan, TM ;
Long, SR ;
Pühler, A ;
Abola, P ;
Ampe, F ;
Barloy-Hubler, F ;
Barnett, MJ ;
Becker, A ;
Boistard, P ;
Bothe, G ;
Boutry, M ;
Bowser, L ;
Buhrmester, J ;
Cadieu, E ;
Capela, D ;
Chain, P ;
Cowie, A ;
Davis, RW ;
Dréano, S ;
Federspiel, NA ;
Fisher, RF ;
Gloux, S ;
Godrie, T ;
Goffeau, A ;
Golding, B ;
Gouzy, J ;
Gurjal, M ;
Hernandez-Lucas, I ;
Hong, A ;
Huizar, L ;
Hyman, RW ;
Jones, T ;
Kahn, D ;
Kahn, ML ;
Kalman, S ;
Keating, DH ;
Kiss, E ;
Komp, C ;
Lalaure, V ;
Masuy, D ;
Palm, C ;
Peck, MC ;
Pohl, TM ;
Portetelle, D ;
Purnelle, B ;
Ramsperger, U ;
Surzycki, R ;
Thébault, P ;
Vandenbol, M .
SCIENCE, 2001, 293 (5530) :668-672
[9]  
Hirsch AM, 2001, PLANT PHYSIOL, V127, P1484, DOI 10.1104/pp.010866
[10]   Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: Application to Sinorhizobium saheli, S-teranga, and Rhizobium sp strains isolated from Acacia and Sesbania [J].
Lortet, G ;
Mear, N ;
Lorquin, J ;
Dreyfus, B ;
deLajudie, P ;
Rosenberg, C ;
Boivin, C .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1996, 9 (08) :736-747