Dynamic manipulation and separation of individual semiconducting and metallic nanowires

被引:224
作者
Jamshidi, Arash [1 ]
Pauzauskie, Peter J. [2 ,3 ]
Schuck, P. James [4 ]
Ohta, Aaron T. [1 ]
Chiou, Pei-Yu [5 ]
Chou, Jeffrey [1 ]
Yang, Peidong [2 ,3 ]
Wu, Ming C. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mol Foundary, Berkeley, CA 94720 USA
[5] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
关键词
ONE-DIMENSIONAL NANOSTRUCTURES; CELL; INTEGRATION; ALIGNMENT; ARRAYS;
D O I
10.1038/nphoton.2007.277
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The synthesis of nanowires has advanced in the past decade to the point where a vast range of insulating, semiconducting and metallic materials(1) are available for use in integrated, heterogeneous optoelectronic devices at nanometre scales(2). However, a persistent challenge has been the development of a general strategy for the manipulation of individual nanowires with arbitrary composition. Here we report that individual semiconducting and metallic nanowires with diameters below 20 nm are addressable with forces generated by optoelectronic tweezers(3). Using 100,000 times less optical power density than optical tweezers, optoelectronic tweezers are capable of transporting individual nanowires with speeds four times greater than the maximum speeds achieved by optical tweezers. A real-time array of silver nanowires is formed using photopatterned virtual electrodes, demonstrating the potential for massively parallel assemblies. Furthermore, optoelectronic tweezers enable the separation of semiconducting and metallic nanowires, suggesting a broad range of applications for the separation and heterogeneous integration of one-dimensional nanoscale materials.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 37 条
[1]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[2]   Photo- and electropatterning of hydrogel-encapsulated living cell arrays [J].
Albrecht, DR ;
Tsang, VL ;
Sah, RL ;
Bhatia, SN .
LAB ON A CHIP, 2005, 5 (01) :111-118
[3]  
[Anonymous], Particle Tracking Using IDL
[4]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[5]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[6]  
Chiou PY, 2005, NATURE, V436, P370, DOI [10.1038/nature03831, 10.1038/nature0383l]
[7]   Kinetic study and new applications of UV radiation curing [J].
Decker, C .
MACROMOLECULAR RAPID COMMUNICATIONS, 2002, 23 (18) :1067-1093
[8]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[9]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[10]   Giant piezoresistance effect in silicon nanowires [J].
He, Rongrui ;
Yang, Peidong .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :42-46