Dynamic manipulation and separation of individual semiconducting and metallic nanowires

被引:224
作者
Jamshidi, Arash [1 ]
Pauzauskie, Peter J. [2 ,3 ]
Schuck, P. James [4 ]
Ohta, Aaron T. [1 ]
Chiou, Pei-Yu [5 ]
Chou, Jeffrey [1 ]
Yang, Peidong [2 ,3 ]
Wu, Ming C. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mol Foundary, Berkeley, CA 94720 USA
[5] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
关键词
ONE-DIMENSIONAL NANOSTRUCTURES; CELL; INTEGRATION; ALIGNMENT; ARRAYS;
D O I
10.1038/nphoton.2007.277
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The synthesis of nanowires has advanced in the past decade to the point where a vast range of insulating, semiconducting and metallic materials(1) are available for use in integrated, heterogeneous optoelectronic devices at nanometre scales(2). However, a persistent challenge has been the development of a general strategy for the manipulation of individual nanowires with arbitrary composition. Here we report that individual semiconducting and metallic nanowires with diameters below 20 nm are addressable with forces generated by optoelectronic tweezers(3). Using 100,000 times less optical power density than optical tweezers, optoelectronic tweezers are capable of transporting individual nanowires with speeds four times greater than the maximum speeds achieved by optical tweezers. A real-time array of silver nanowires is formed using photopatterned virtual electrodes, demonstrating the potential for massively parallel assemblies. Furthermore, optoelectronic tweezers enable the separation of semiconducting and metallic nanowires, suggesting a broad range of applications for the separation and heterogeneous integration of one-dimensional nanoscale materials.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 37 条
[11]   Controlled growth of Si nanowire arrays for device integration [J].
Hochbaum, AI ;
Fan, R ;
He, RR ;
Yang, PD .
NANO LETTERS, 2005, 5 (03) :457-460
[12]   Directed assembly of one-dimensional nanostructures into functional networks [J].
Huang, Y ;
Duan, XF ;
Wei, QQ ;
Lieber, CM .
SCIENCE, 2001, 291 (5504) :630-633
[13]   Scalable interconnection and integration of nanowire devices without registration [J].
Jin, S ;
Whang, DM ;
McAlpine, MC ;
Friedman, RS ;
Wu, Y ;
Lieber, CM .
NANO LETTERS, 2004, 4 (05) :915-919
[14]  
Jones T.B., 2005, ELECTROMECHANICS PAR, DOI [10.1017/CBO9780511574498, DOI 10.1017/CBO9780511574498]
[15]   Separation of metallic from semiconducting single-walled carbon nanotubes [J].
Krupke, R ;
Hennrich, F ;
von Löhneysen, H ;
Kappes, MM .
SCIENCE, 2003, 301 (5631) :344-347
[16]   Crystallographic alignment of high-density gallium nitride nanowire arrays [J].
Kuykendall, T ;
Pauzauskie, PJ ;
Zhang, YF ;
Goldberger, J ;
Sirbuly, D ;
Denlinger, J ;
Yang, PD .
NATURE MATERIALS, 2004, 3 (08) :524-528
[17]   Nanoribbon waveguides for subwavelength photonics integration [J].
Law, M ;
Sirbuly, DJ ;
Johnson, JC ;
Goldberger, J ;
Saykally, RJ ;
Yang, PD .
SCIENCE, 2004, 305 (5688) :1269-1273
[18]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[19]   An electrical characterization of a hetero-junction nanowire (NW) PN diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment [J].
Lee, S. -Y. ;
Kim, T. -H. ;
Suh, D. -I. ;
Park, J. -E. ;
Kim, J. -H. ;
Youn, C. -J. ;
Ahn, B. -K. ;
Lee, S. -K. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 36 (02) :194-198
[20]   Three-dimensional photopatterning of hydrogels containing living cells [J].
Liu, VA ;
Bhatia, SN .
BIOMEDICAL MICRODEVICES, 2002, 4 (04) :257-266