Crystallographic alignment of high-density gallium nitride nanowire arrays

被引:416
作者
Kuykendall, T
Pauzauskie, PJ
Zhang, YF
Goldberger, J
Sirbuly, D
Denlinger, J
Yang, PD [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics1. Elucidation of the vapour-liquid-solid growth mechanism 2 has already enabled precise control over nanowire position and size1,3,4-8 yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) γ-LiAlO2 and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [11̄0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.
引用
收藏
页码:524 / 528
页数:5
相关论文
共 30 条
  • [1] BIR GL, 1972, SYMMETRY STRAIN INDU, P58303
  • [2] Catalytic growth and characterization of gallium nitride nanowires
    Chen, CC
    Yeh, CC
    Chen, CH
    Yu, MY
    Liu, HL
    Wu, JJ
    Chen, KH
    Chen, LC
    Peng, JY
    Chen, YF
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) : 2791 - 2798
  • [3] Self-organized GaN quantum wire UV lasers
    Choi, HJ
    Johnson, JC
    He, RR
    Lee, SK
    Kim, F
    Pauzauskie, P
    Goldberger, J
    Saykally, RJ
    Yang, PD
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (34) : 8721 - 8725
  • [4] Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN
    Domen, K
    Horino, K
    Kuramata, A
    Tanahashi, T
    [J]. APPLIED PHYSICS LETTERS, 1997, 71 (14) : 1996 - 1998
  • [5] Laser-assisted catalytic growth of single crystal GaN nanowires
    Duan, XF
    Lieber, CM
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (01) : 188 - 189
  • [6] Single-crystal gallium nitride nanotubes
    Goldberger, J
    He, RR
    Zhang, YF
    Lee, SW
    Yan, HQ
    Choi, HJ
    Yang, PD
    [J]. NATURE, 2003, 422 (6932) : 599 - 602
  • [7] Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method
    Han, S
    Jin, W
    Tang, T
    Li, C
    Zhang, DH
    Liu, XL
    Han, J
    Zhou, CW
    [J]. JOURNAL OF MATERIALS RESEARCH, 2003, 18 (02) : 245 - 249
  • [8] Self-organized fabrication of planar GaAs nanowhisker arrays
    Haraguchi, K
    Hiruma, K
    Katsuyama, T
    Tominaga, K
    Shirai, M
    Shimada, T
    [J]. APPLIED PHYSICS LETTERS, 1996, 69 (03) : 386 - 387
  • [9] Control of thickness and orientation of solution-grown silicon nanowires
    Holmes, JD
    Johnston, KP
    Doty, RC
    Korgel, BA
    [J]. SCIENCE, 2000, 287 (5457) : 1471 - 1473
  • [10] Room-temperature ultraviolet nanowire nanolasers
    Huang, MH
    Mao, S
    Feick, H
    Yan, HQ
    Wu, YY
    Kind, H
    Weber, E
    Russo, R
    Yang, PD
    [J]. SCIENCE, 2001, 292 (5523) : 1897 - 1899