Control of thickness and orientation of solution-grown silicon nanowires

被引:1440
作者
Holmes, JD
Johnston, KP
Doty, RC
Korgel, BA [1 ]
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas, Texas Mat Inst, Austin, TX 78712 USA
关键词
D O I
10.1126/science.287.5457.1471
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bulk quantities of defect-free silicon (Si) nanowires with nearly uniform diameters ranging from 40 to 50 angstroms were grown to a length of several micrometers with a supercritical fluid solution-phase approach. Alkanethiol-coated gold nanocrystals (25 angstroms in diameter) were used as uniform seeds to direct one-dimensional Si crystallization in a solvent heated and pressurized above its critical point. The orientation of the Si nanowires produced with this method could be controlled with reaction pressure. Visible photoluminescence due to quantum confinement effects was observed, as were discrete optical transitions in the ultraviolet-visible absorbance spectra.
引用
收藏
页码:1471 / 1473
页数:3
相关论文
共 23 条