Exponential gain in quantum computing of quantum chaos and localization

被引:76
作者
Georgeot, B [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, Phys Quant Lab, CNRS, UMR 5626, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevLett.86.2890
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization, and Anderson transition can be modeled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.
引用
收藏
页码:2890 / 2893
页数:4
相关论文
共 29 条
[1]   Quantum delta-kicked rotor: Experimental observation of decoherence [J].
Ammann, H ;
Gray, R ;
Shvarchuck, I ;
Christensen, N .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4111-4115
[2]   Efficient networks for quantum factoring [J].
Beckman, D ;
Chari, AN ;
Devabhaktuni, S ;
Preskill, J .
PHYSICAL REVIEW A, 1996, 54 (02) :1034-1063
[3]   ANDERSON TRANSITION IN A ONE-DIMENSIONAL SYSTEM WITH 3 INCOMMENSURATE FREQUENCIES [J].
CASATI, G ;
GUARNERI, I ;
SHEPELYANSKY, DL .
PHYSICAL REVIEW LETTERS, 1989, 62 (04) :345-348
[4]   HYDROGEN-ATOM IN MONOCHROMATIC-FIELD - CHAOS AND DYNAMICAL PHOTONIC LOCALIZATION [J].
CASATI, G ;
GUARNERI, I ;
SHEPELYANSKY, DL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (07) :1420-1444
[5]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[6]  
CHIRIKOV BV, 1991, LES HOUCH S, V52, P443
[7]   ANDERSON LOCALIZATION FOR A TWO-DIMENSIONAL ROTOR [J].
DORON, E ;
FISHMAN, S .
PHYSICAL REVIEW LETTERS, 1988, 60 (10) :867-870
[8]   EXACT NUMERICAL-STUDIES OF HAMILTONIAN MAPS - ITERATING WITHOUT ROUNDOFF ERROR [J].
EARN, DJD ;
TREMAINE, S .
PHYSICA D, 1992, 56 (01) :1-22
[9]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753
[10]   QUANTUM-MECHANICAL COMPUTERS [J].
FEYNMAN, RP .
FOUNDATIONS OF PHYSICS, 1986, 16 (06) :507-531