Comparative study of generalized Born models: Born radii and peptide folding

被引:70
作者
Zhu, J [1 ]
Alexov, E [1 ]
Honig, B [1 ]
机构
[1] Columbia Univ, Howard Hughes Med Inst, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
D O I
10.1021/jp046307s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we have implemented four analytical generalized Born (GB) models and investigated their performance in conjunction with the GROMOS96 force field. The four models include that of Still and co-workers, the HCT model of Cramer, Truhlar, and co-workers, a modified form of the AGB model of Levy and co-workers, and the GBMV2 model of Brooks and co-workers. The models were coded independently and implemented in the GROMOS software package and in TINKER. They were compared in terms of their ability to reproduce the results of Poisson-Boltzmann (PB) calculations and in their performance in the ab initio peptide folding of two peptides, one that forms a beta-hairpin in solution and one that forms an alpha-helix. In agreement with previous work, the GBMV2 model is most successful in reproducing PB results while the other models tend to underestimate the effective Born radii of buried atoms. In contrast, stochastic dynamics simulations on the folding of the two peptides, the C-terminus beta-hairpin of the B1 domain of protein G and the alanine-based alpha-helical peptide 3K(I), suggest that the simpler GB models are more effective in sampling conformational space. Indeed, the Still model used in conjunction with the GROMOS96 force field is able to fold the hairpin peptide to a native-like structure without the benefit of enhanced sampling techniques. This is due in part to the properties of the united-atom GROMOS96 force field which appears to be more flexible, and hence to sample more efficiently, than force fields such as OPLSAA. Our results suggest a general strategy which involves using different combinations of force fields and solvent models in different applications, for example, using GROMOS96 and a simple GB model In sampling and OPLSAA and a more accurate GB model in refinement. The fact that various methods have been implemented in a unified way should facilitate the testing and subsequent use of different methods to evaluate conformational free energies in different applications. Our results also bear on some general issues involved in peptide folding and structure prediction which are addressed in the Discussion.
引用
收藏
页码:3008 / 3022
页数:15
相关论文
共 90 条
[1]   Role of the protein side-chain fluctuations on the strength of pair-wise electrostatic interactions:: Comparing experimental with computed pKas [J].
Alexov, E .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 50 (01) :94-103
[2]  
[Anonymous], J PHYS A
[3]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[4]  
Bashford D, 1997, LECT NOTES COMPUTER, P233, DOI [DOI 10.1007/3-540-63827-X_66, 10.1007/3-540-63827-X]
[5]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   A SHORT LINEAR PEPTIDE THAT FOLDS INTO A NATIVE STABLE BETA-HAIRPIN IN AQUEOUS-SOLUTION [J].
BLANCO, FJ ;
RIVAS, G ;
SERRANO, L .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (09) :584-590
[8]  
BLANCO FJ, 1995, EUR J BIOCHEM, V230, P634
[9]   Mechanical unfolding of a β-hairpin using molecular dynamics [J].
Bryant, Z ;
Pande, VS ;
Rokhsar, DS .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :584-589
[10]   Understanding β-hairpin formation [J].
Dinner, AR ;
Lazaridis, T ;
Karplus, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9068-9073