Role of the protein side-chain fluctuations on the strength of pair-wise electrostatic interactions:: Comparing experimental with computed pKas

被引:53
作者
Alexov, E
机构
[1] Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA
[2] Columbia Univ, Dept Biochem, New York, NY 10032 USA
关键词
pH; pK(a)s; Boltzmann distribution; Poisson-Boltzmann equation; DelPhi; MCCE; sidechain flexibility; conformation changes; ion pairs; salt bridges;
D O I
10.1002/prot.10265
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effect of the protein side-chain fluctuations on the strength of electrostatic interactions was studied. The effect was modeled on 7 different crystal structures on the same enzyme as well as on 20 molecular dynamics snapshot structures. It was shown that the side-chain flexibility affects predominantly the magnitude of the strong pair-wise interactions, that is, the pair-wise interaction among ion pairs, and practically does not affect the interactions with the rest of the protein. This was used to suggest a correction function that should be applied to the original pair-wise electrostatic interaction to mimic the effects of the fluctuations. The procedure is applied on three ion pairs identified in lysozyme. It was shown that sampling different side-chain rotamers and modifying the strength of the pair-wise interaction energies makes calculated pK(a)s less sensitive to the fluctuations of the structure and improves the prediction accuracy.
引用
收藏
页码:94 / 103
页数:10
相关论文
共 57 条
[1]  
*ACC INC, 1990, ACC INS 2
[2]   Calculated protein and proton motions coupled to electron transfer:: Electron transfer from QA- to QB in bacterial photosynthetic reaction centers [J].
Alexov, EG ;
Gunner, MR .
BIOCHEMISTRY, 1999, 38 (26) :8253-8270
[3]   Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties [J].
Alexov, EG ;
Gunner, MR .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2075-2093
[4]   PREDICTION OF PH-DEPENDENT PROPERTIES OF PROTEINS [J].
ANTOSIEWICZ, J ;
MCCAMMON, JA ;
GILSON, MK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) :415-436
[5]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[6]   MULTIPLE-SITE TITRATION CURVES OF PROTEINS - AN ANALYSIS OF EXACT AND APPROXIMATE METHODS FOR THEIR CALCULATION [J].
BASHFORD, D ;
KARPLUS, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (23) :9556-9561
[7]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[8]   PROTONATION OF INTERACTING RESIDUES IN A PROTEIN BY A MONTE-CARLO METHOD - APPLICATION TO LYSOZYME AND THE PHOTOSYNTHETIC REACTION CENTER OF RHODOBACTER-SPHAEROIDES [J].
BEROZA, P ;
FREDKIN, DR ;
OKAMURA, MY ;
FEHER, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5804-5808
[9]   Simulating proteins at constant pH:: An approach combining molecular dynamics and Monte Carlo simulation [J].
Bürgi, R ;
Kollman, PA ;
van Gunsteren, WF .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (04) :469-480
[10]   Empirical relationships between protein structure and carboxyl pKa values in proteins [J].
Forsyth, WR ;
Antosiewicz, JM ;
Robertson, AD .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 48 (02) :388-403