Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor

被引:27
作者
Yang, Kun [1 ]
Zhang, Chun-yang [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed Engn & Hlth Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrochemical biosensor; Single-walled carbon nanotubes; DNA analysis; Sensitivity enhancement; Aptamer; LABEL-FREE; DNA BIOSENSOR; IMPROVED SENSITIVITY; HYBRIDIZATION; AMPLIFICATION; SERUM; IMMUNOASSAY; NANOSENSOR; APTAMER; SUPPORT;
D O I
10.1016/j.bios.2011.07.028
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report for the first time a simple approach to fabricate an electrochemical DNA (E-DNA) biosensor by introducing the single-walled carbon nanotubes (SWNTs). The SWNTs combine with the electrochemical label (methyl blue, MB)-modified single-stranded DNA (ssDNA) probes to generate a nanomaterial-biomolecule composite, which functions as a signal amplification platform to facilitate the electron-transfer between the electrochemical label and the electrode. This SWNT-based E-DNA biosensor produces a high square wave voltammetry (SWV) signal in the absence of target DNA. In the presence of target DNA, the MB-labeled ssDNA probes are removed from the SWNT-modified electrode due to the formation of a double-stranded DNA (dsDNA), generating a relatively low SWV signal. This signaloff SWNT-based E-DNA biosensor exhibits improved sensitivity and large linear dynamic range with low detection limit; it can even distinguish 1-base mismatched target DNA. Further experiments demonstrate that the SWNT-based E-DNA biosensor is superior to the multi-walled carbon nanotube (MWNT)-based one for DNA detection. Moreover, the introduction of aptamer into the SWNT-based biosensor might be further extended to detect small biomolecules such as adenosine. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 64 条
[1]   Suborganelle Sensing of Mitochondrial cAMP-Dependent Protein Kinase Activity [J].
Agnes, Richard S. ;
Jernigan, Finith ;
Shell, Jennifer R. ;
Sharma, Vyas ;
Lawrence, David S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) :6075-6080
[2]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[3]   Thin-Film Transistors with Length-Sorted DNA-Wrapped Single-Wall Carbon Nanotubes [J].
Asada, Yuki ;
Miyata, Yasumitsu ;
Shiozawa, Kazunari ;
Ohno, Yutaka ;
Kitaura, Ryo ;
Mizutani, Takashi ;
Shinohara, Hisanori .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (01) :270-273
[4]  
Bhushan B., 2007, HDB NANOTECHNOLOGY
[5]   Electrochemical DNA biosensor based on conducting polyaniline nanotube array [J].
Chang, Haixin ;
Yuan, Ying ;
Shi, Nanlin ;
Guan, Yifu .
ANALYTICAL CHEMISTRY, 2007, 79 (13) :5111-5115
[6]   Controlled precipitation of solubilized carbon nanotubes by delamination of DNA [J].
Chen, RJ ;
Zhang, YG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (01) :54-57
[7]   DNA-directed assembly of single-wall carbon nanotubes [J].
Chen, Yi ;
Liu, Haipeng ;
Ye, Tao ;
Kim, Junghwa ;
Mao, Chengde .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (28) :8696-+
[8]   Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA [J].
Fan, CH ;
Plaxco, KW ;
Heeger, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) :9134-9137
[9]   Sequence-independent helical wrapping of singles-walled carbon nanotubes by long genomic DNA [J].
Gigliotti, B ;
Sakizzie, B ;
Bethune, DS ;
Shelby, RM ;
Cha, JN .
NANO LETTERS, 2006, 6 (02) :159-164
[10]   Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J].
Hansen, JA ;
Wang, J ;
Kawde, AN ;
Xiang, Y ;
Gothelf, KV ;
Collins, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2228-2229