On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression

被引:70
作者
Pan, W [1 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
关键词
D O I
10.1093/bioinformatics/btg167
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recently a class of nonparametric statistical methods, including the empirical Bayes (EB) method, the significance analysis of microarray (SAM) method and the mixture model method (MMM), have been proposed to detect differential gene expression for replicated microarray experiments conducted under two conditions. All the methods depend on constructing a test statistic Z and a so-called null statistic z. The null statistic z is used to provide some reference distribution for Z such that statistical inference can be accomplished. A common way of constructing z is to apply Z to randomly permuted data. Here we point our that the distribution of z may not approximate the null distribution of Z well, leading to possibly too conservative inference. This observation may apply to other permutation-based nonparametric methods. We propose a new method of constructing a null statistic that aims to estimate the null distribution of a test statistic directly. Results: Using simulated data and real data, we assess and compare the performance of the existing method and our new method when applied in EB, SAM and MMM. Some interesting findings on operating characteristics of EB, SAM and MMM are also reported. Finally, by combining the idea of SAM and MMM, we outline a simple nonparametric method based on the direct use of a test statistic and a null statistic.
引用
收藏
页码:1333 / 1340
页数:8
相关论文
共 32 条
[1]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, DB ;
Gadbury, GL ;
Heo, MS ;
Fernández, JR ;
Lee, CK ;
Prolla, TA ;
Weindruch, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) :1-20
[2]  
[Anonymous], GENOME BIOL
[3]  
[Anonymous], 2002, GENOME BIOL, DOI DOI 10.1186/GB-2002-3-2-RESEARCH000911864371
[4]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[5]   Bayesian hierarchical model for identifying changes in gene expression from microarray experiments [J].
Broët, P ;
Richardson, S ;
Radvanyi, F .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (04) :671-683
[6]  
Chen Y, 1997, J Biomed Opt, V2, P364, DOI 10.1117/12.281504
[7]  
Dudoit S, 2002, STAT SINICA, V12, P111
[8]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[9]  
EFRON B, 2000, 37B213 STANF U STAT
[10]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537