Chaos synchronization via multivariable PID control

被引:20
作者
Wen, Guilin
Wang, Qing-Guo
Lin, Chong
Li, Guangyao
Han, Xu
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore
[2] Hunan Univ, Coll Mech & Automot Engn, State Key Lab Adv Design & Manufactory Vehicle Bo, Changsha 410082, Peoples R China
[3] Hunan Univ, State Key Lab Adv Design & Manufactory Vehicle Bo, Changsha 420082, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 05期
关键词
chaos synchronization; multivariable PID control; the descriptor approach; static output feedback; linear matrix inequality(LMI); free-weighting matrix approach;
D O I
10.1142/S0218127407018051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Synchronization via multivariable PID control is studied. Based on the descriptor approach, the problem of PID controller design is transformed to that of static output feedback (SOF) controller design. The improvement of the solvability of the Linear Matrix Inequality (LMI) is achieved, in comparison with the existing literature on designing PID controller based on the LMI technique. With the aid of the free-weighting matrix approach and the S-procedure, the synchronization criterion for a general Lur'e system is established based on the LMI technique. The feasibility of the methodology is illustrated by the well-known Chua's circuit.
引用
收藏
页码:1753 / 1758
页数:6
相关论文
共 29 条
[11]  
HECTOR P, 2000, PHYS LETT A, V276, P245
[12]   Synchronization of chaotic systems based on PI observer design [J].
Hua, CC ;
Guan, XP .
PHYSICS LETTERS A, 2005, 334 (5-6) :382-389
[13]  
ITOH M, 1995, IEICE T FUND ELECTR, VE78A, P285
[14]   An LMI criterion for linear-state-feedback based chaos synchronization of a class of chaotic systems [J].
Jiang, GP ;
Zheng, WX .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :437-443
[15]  
Kawata J, 1999, IEICE T FUND ELECTR, VE82A, P1322
[16]  
Khalil H. K., 1993, NONLINEAR SYSTEMS
[17]   An improvement on multivariable PID controller design via iterative LMI approach [J].
Lin, C ;
Wang, QG ;
Lee, TH .
AUTOMATICA, 2004, 40 (03) :519-525
[18]  
Luyben W.L., 1990, PROCESS MODELING SIM, V2nd
[19]   Observer based synchronization of chaotic systems [J].
Morgul, O ;
Solak, E .
PHYSICAL REVIEW E, 1996, 54 (05) :4803-4811
[20]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824