Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

被引:184
作者
Ambrosi, Adriano [1 ]
Chua, Chun Kiang [1 ]
Khezri, Bahareh [1 ]
Sofer, Zdenek [2 ]
Webster, Richard D. [1 ]
Pumera, Martin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Inst Chem Technol, Dept Inorgan Chem, CR-16628 Prague 6, Czech Republic
关键词
electrochemistry; synthesis; MULTIWALLED CARBON NANOTUBES; MODIFIED ELECTRODES; LARGE-AREA; ELECTROCHEMISTRY; OXIDE; PURIFICATION; FILMS; WATER; BIOAVAILABILITY; NANOGRAPHENE;
D O I
10.1073/pnas.1205388109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 degrees C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.
引用
收藏
页码:12899 / 12904
页数:6
相关论文
共 51 条
[1]   Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties [J].
Ambrosi, Adriano ;
Chee, Sze Yin ;
Khezri, Bahareh ;
Webster, Richard D. ;
Sofer, Zdenek ;
Pumera, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (02) :500-503
[2]   Electrochemistry at Chemically Modified Graphenes [J].
Ambrosi, Adriano ;
Bonanni, Alessandra ;
Sofer, Zdenek ;
Cross, Jeffrey S. ;
Pumera, Martin .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (38) :10763-10770
[3]   Regulatory Peptides Are Susceptible to Oxidation by Metallic Impurities within Carbon Nanotubes [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (06) :1786-1792
[4]   Stability and electronic properties of carbon nanotubes doped with transition metal impurities [J].
Azevedo, S. ;
Chesman, C. ;
Kaschny, J. R. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (01) :123-128
[5]   Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes [J].
Banks, CE ;
Crossley, A ;
Salter, C ;
Wilkins, SJ ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (16) :2533-2537
[6]   Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes [J].
Batchelor-McAuley, Christopher ;
Wildgoose, Gregory G. ;
Compton, Richard G. ;
Shao, Lidong ;
Green, Malcolm L. H. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 132 (01) :356-360
[7]  
Buchel K. H., 2008, IND INORGANIC CHEM, P511
[8]  
Cocan Graphite, 2012, SUPERECARB REG SYNTH
[9]   Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles [J].
Dai, Xuan ;
Wildgoose, Gregory G. ;
Compton, Richard G. .
ANALYST, 2006, 131 (08) :901-906
[10]   Nanotrench arrays reveal insight into graphite electrochemistry [J].
Davies, TJ ;
Hyde, ME ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (32) :5121-5126