Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide

被引:266
作者
Akhavan, O. [1 ,2 ]
Kalaee, M. [1 ]
Alavi, Z. S. [1 ]
Ghiasi, S. M. A. [1 ]
Esfandiar, A. [2 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
关键词
PHOTOCATALYTIC REDUCTION; NANOPARTICLES; COMPLEXATION; TRANSPARENT; ENVIRONMENT; NANOSHEETS; IRON(III); BACTERIA; SHEETS; FILMS;
D O I
10.1016/j.carbon.2012.02.087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An easy method for green and low-temperature (40 degrees C) reduction of graphene oxide (GO) by increasing the antioxidant activity of green tea polyphenols (GTPs) in the presence of iron was developed. The reduction level (obtained by X-ray photoelectron spectroscopy) and electrical conductivity (obtained by current-voltage measurement) of the GO sheets reduced by GTPs in the presence of iron were comparable to those of hydrazine-reduced GO and much better than those of the GO reduced by only GTPs (in the absence of iron) at reduction temperatures of 40-80 degrees C. Raman spectroscopy indicated that application of GTPs in the presence of iron, in contrast to hydrazine, resulted in better recovering of the sp(2)-hybridized structure of the sheets. The lasting water dispersion of the polyphenolic-reduced GO sheets in the presence of iron was assigned to pi-pi adsorption of Fe2+-polyphenol radicals on surface of the reduced sheets. A mechanism describing the role of iron in the reduction of the GO by epicatechin gallate and epigallocatechin gallate of green tea was also proposed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3015 / 3025
页数:11
相关论文
共 50 条
[1]   A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent [J].
Ai, Kelong ;
Liu, Yanlan ;
Lu, Lehui ;
Cheng, Xiaoli ;
Huo, Lihua .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (10) :3365-3370
[2]   Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J].
Akhavan, O. ;
Ghaderi, E. .
CARBON, 2012, 50 (05) :1853-1860
[3]   Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation [J].
Akhavan, O. ;
Ghaderi, E. ;
Esfandiar, A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) :6279-6288
[4]   Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J].
Akhavan, O. .
CARBON, 2011, 49 (01) :11-18
[5]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[6]   The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets [J].
Akhavan, O. .
CARBON, 2010, 48 (02) :509-519
[7]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[8]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[9]   Graphene Nanomesh by ZnO Nanorod Photocatalysts [J].
Akhavan, Omid .
ACS NANO, 2010, 4 (07) :4174-4180
[10]  
[Anonymous], 1997, CHEM APPL GREEN TEA