A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent

被引:204
作者
Ai, Kelong [1 ]
Liu, Yanlan [1 ,2 ]
Lu, Lehui [1 ]
Cheng, Xiaoli [3 ]
Huo, Lihua [3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Elect Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
[3] Heilongjiang Univ, Harbin 150080, Peoples R China
关键词
SOLID-STATE NMR; GRAPHITE OXIDE; EXFOLIATED GRAPHITE; ORGANIC-SOLVENTS; NITRIC-OXIDE; DISPERSIONS; REDUCTION; ELECTRONICS; NANOSHEETS; COMPOSITE;
D O I
10.1039/c0jm02865g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile and efficient strategy is described for the fabrication of soluble reduced graphene oxide (rGO) sheets. Different from the conventional strategies, the proposed method is based on the reduction of graphene oxide by an endogenous reducing agent from a most widely used and cost-effective solvent, without adding any other toxic reducing agent. Simultaneously, this solvent can serve as an effective stabilizer, avoiding complicated and time-consuming modification procedures. The as-prepared rGO sheets not only exhibit high reduction level and conductivity, but also can be well dispersed in many solvents. Of particular significance is that rGO sheets can be produced in large quantities. These advantages endow this proposed synthetic approach great potential applications in the construction of high-performance graphene-based devices at low cost, as demonstrated in our study of NO gas sensing.
引用
收藏
页码:3365 / 3370
页数:6
相关论文
共 55 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]  
Behabtu N, 2010, NAT NANOTECHNOL, V5, P406, DOI [10.1038/NNANO.2010.86, 10.1038/nnano.2010.86]
[3]   Kinetics and mechanism of nucleophilic addition to nitric oxide: Secondary amine diazeniumdiolation [J].
Bohle, D. Scott ;
Smith, Kamilah N. .
INORGANIC CHEMISTRY, 2008, 47 (10) :3925-3927
[4]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[5]   NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations [J].
Casabianca, Leah B. ;
Shaibat, Medhat A. ;
Cai, Weiwei W. ;
Park, Sungjin ;
Piner, Richard ;
Ruoff, Rodney S. ;
Ishii, Yoshitaka .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) :5672-5676
[6]  
Choucair M, 2009, NAT NANOTECHNOL, V4, P30, DOI [10.1038/nnano.2008.365, 10.1038/NNANO.2008.365]
[7]   Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite [J].
Cote, Laura J. ;
Cruz-Silva, Rodolfo ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (31) :11027-11032
[8]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[9]   REACTION OF NITROGEN(II) OXIDE WITH VARIOUS PRIMARY AND SECONDARY AMINES [J].
DRAGO, RS ;
KARSTETTER, BR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1961, 83 (08) :1819-+
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240