copper;
Menkes disease;
ATP7A;
metal homeostasis;
hydrogen;
exchange;
D O I:
10.1016/j.jmb.2005.07.034
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Menkes disease is a fatal disease that can be induced by various mutations in the ATP7A gene, leading to unpaired uptake of dietary copper. The ATP7A gene encodes a copper(I)-translocating ATPase. Here the disease-causing A629P mutation, which occurs in the last of the six copper(I)binding soluble domains of the ATPase (hereafter MNK6), was investigated. To understand why this apparently minor amino acid replacement is pathogenic, the solution structures and dynamics on various time-scales of wild-type and A629P-MNK6 were determined both in the apo- and copper(I)-loaded forms. The interaction in vitro with the physiological ATP7A copper(I)-donor (HAH1) was additionally studied. The A629P mutation makes the protein beta-sheet more solvent accessible, possibly resulting in an enhanced susceptibility of ATP7A to proteolytic cleavage and/or in reduced capability of copper(I)-translocation. A small reduction of the affinity for copper(I) is also observed. Both effects could concur to pathogenicity. (c) 2005 Elsevier Ltd. All rights reserved.