Effect of Aluminum Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li1+x(Ni0.40Mn0.40Co0.20-zAlz)1-xO2

被引:77
作者
Croguennec, L. [1 ,2 ]
Bains, J. [1 ,2 ]
Breger, J. [3 ]
Tessier, C. [3 ]
Biensan, Ph. [3 ]
Levasseur, S. [4 ]
Delmas, C. [1 ,2 ]
机构
[1] Univ Bordeaux, CNRS, ICMCB, F-33608 Pessac, France
[2] ICMCB, IPB, ENSCBP, F-33608 Pessac, France
[3] Direct Rech, SAFT, F-33074 Bordeaux, France
[4] UMICORE Res & Dev, B-2250 Olen, Belgium
关键词
LITHIUM-ION BATTERIES; POSITIVE ELECTRODE MATERIALS; INSERTION MATERIAL; LIAL1/4NI3/4O2 R(3)OVER-BAR-M; SHUTTLECOCK BATTERIES; CATHODE MATERIALS; HIGH-CAPACITY; AL; LINI1/3MN1/3CO(1/3-Z)ALZO2; LICO1/3NI1/3MN1/3O2;
D O I
10.1149/1.3571479
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
"Li-1.04(Ni0.40Mn0.40Co0.20-zAlz)(0.96)O-2" (z = 0; 0.05 and 0.10) samples were synthesized using a coprecipitation method followed by calcinations at 500 degrees C for 5 h and then at 950 degrees C for 2 h. Structural and physico-chemical characterizations have shown that these materials were obtained pure with a small overlithiation ratio (Li/M 1.01-1.03) and thus a significant exchange between the divalent nickel ions from the slabs and the lithium ions from the interslab spaces (between 4% for the non substituted material and 8% for the aluminum substituted ones). Aluminum substitution induces a decrease of the reversible capacity, but also a major improvement of the thermal stability in the deintercalated state (corresponding to the charge state of the battery). These results have thus shown that the composition Li-1.01(Ni0.39Mn0.40Co0.15Al0.06)(0.99)O-2 is very attractive for large scale lithium-ion batteries to be developed for EV and HEV applications. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3571479]
引用
收藏
页码:A664 / A670
页数:7
相关论文
共 37 条
[1]   X-ray diffraction, EPR, and 6Li and 27Al MAS NMR study of LiAlO2-LiCoO2 solid solutions [J].
Alcantara, R ;
Lavela, P ;
Relano, PL ;
Tirado, JL ;
Zhecheva, E ;
Stoyanova, R .
INORGANIC CHEMISTRY, 1998, 37 (02) :264-269
[2]  
BAINS J, J POWER SOURCE UNPUB
[3]  
Biensan Ph., 2009, Patent, Patent No. 2179968
[4]  
Castaing J. Breger. F., 2009, Patent, Patent No. [FR 2937633, 2937633]
[5]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696
[6]   Segregation Tendency in Layered Aluminum-Substituted Lithium Nickel Oxides [J].
Croguennec, L. ;
Shao-Horn, Y. ;
Gloter, A. ;
Colliex, C. ;
Guilmard, M. ;
Fauth, F. ;
Delmas, C. .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1051-1059
[7]   Possible Explanation for the Efficiency of Al-Based Coatings on LiCoO2: Surface Properties of LiCo1-xAlxO2 Solid Solution [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Flahaut, D. ;
Menetrier, M. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2009, 21 (23) :5607-5616
[8]   Layered Li(Ni, M)O2 systems as the cathode material in lithium-ion batteries [J].
Delmas, C ;
Croguennec, L .
MRS BULLETIN, 2002, 27 (08) :608-612
[9]   On the behavior of the LixNiO2 system:: an electrochemical and structural overview [J].
Delmas, C ;
Peres, JP ;
Rougier, A ;
Demourgues, A ;
Weill, F ;
Chadwick, A ;
Broussely, M ;
Perton, F ;
Biensan, P ;
Willmann, P .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :120-125
[10]   Thermal stability of lithium nickel oxide derivatives.: Part II:: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30).: Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 [J].
Guilmard, M ;
Croguennec, L ;
Delmas, C .
CHEMISTRY OF MATERIALS, 2003, 15 (23) :4484-4493