Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer

被引:22
作者
Buness, Andreas [1 ]
Kuner, Ruprecht
Ruschhaupt, Markus
Poustka, Annemarie
Sueltmann, Holger
Tresch, Achim
机构
[1] German Canc Res Ctr, Dept Mol Genome Anal, D-69120 Heidelberg, Germany
[2] Univ Munich, Inst Med Informat Biometr & Epidemiol, D-81377 Munich, Germany
[3] Inst Med Biometry Epidemiiol & Informat, D-55131 Mainz, Germany
关键词
D O I
10.1093/bioinformatics/btm340
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In cancer, chromosomal imbalances like amplifications and deletions, or changes in epigenetic mechanisms like DNA methylation influence the transcriptional activity. These alterations are often not limited to a single gene but affect several genes of the genomic region and may be relevant for the disease status. For example, the ERBB2 amplicon (17q21) in breast cancer is associated with poor patient prognosis. We present a general, unsupervised method for genome-wide gene expression data to systematically detect tumor patients with chromosomal regions of distinct transcriptional activity. The method aims to find expression patterns of adjacent genes with a consistently decreased or increased level of gene expression in tumor samples. Such patterns have been found to be associated with chromosomal aberrations and clinical parameters like tumor grading and thus can be useful for risk stratification or therapy. Results: Our approach was applied to 12 independent human breast cancer microarray studies comprising 1422 tumor samples. We prioritized chromosomal regions and genes predominantly found across all studies. The result highlighted not only regions which are well known to be amplified like 17q21 and 11q13, but also others like 8q24 (distal to MYC) and 17q24-q25 which may harbor novel putative oncogenes. Since our approach can be applied to any microarray study it may become a valuable tool for the exploration of transcriptional changes in diverse disease types. Availability: The R source codes which implement the method and an exemplary analysis are available at http://www.dkfz.de/mga2/people/buness/CTP/. Contact: a.buness@gmx.de Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:2273 / 2280
页数:8
相关论文
共 48 条
[21]   Amplification of a 280-kilobase core region at the ERBB2 locus leads to activation of two hypothetical proteins in breast cancer [J].
Kauraniemi, P ;
Kuukasjärvi, T ;
Sauter, G ;
Kallioniemi, A .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 163 (05) :1979-1984
[22]  
Kauraniemi P, 2001, CANCER RES, V61, P8235
[23]   A model-based scan statistic for identifying extreme chromosomal regions of gene expression in human tumors [J].
Levin, AM ;
Ghosh, D ;
Cho, KR ;
Kardia, SLR .
BIOINFORMATICS, 2005, 21 (12) :2867-2874
[24]   Grb2 downregulation leads to Akt inactivation in heregulin-stimulated and ErbB2-overexpressing breast cancer cells [J].
Lim, SJ ;
Lopez-Berestein, G ;
Hung, MC ;
Lupu, R ;
Tari, AM .
ONCOGENE, 2000, 19 (54) :6271-6276
[25]   The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression [J].
Liu, Juhong ;
Kouzine, Fedor ;
Nie, Zuqin ;
Chung, Hye-Jung ;
Elisha-Feil, Zichrini ;
Weber, Achim ;
Zhao, Keji ;
Levens, David .
EMBO JOURNAL, 2006, 25 (10) :2119-2130
[26]   A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen [J].
Ma, XJ ;
Wang, ZC ;
Ryan, PD ;
Isakoff, SJ ;
Barmettler, A ;
Fuller, A ;
Muir, B ;
Mohapatra, G ;
Salunga, R ;
Tuggle, JT ;
Tran, Y ;
Tran, D ;
Tassin, A ;
Amon, P ;
Wang, W ;
Wang, W ;
Enright, E ;
Stecker, K ;
Estepa-Sabal, E ;
Smith, B ;
Younger, J ;
Balis, U ;
Michaelson, J ;
Bhan, A ;
Habin, K ;
Baer, TM ;
Brugge, J ;
Haber, DA ;
Erlander, MG ;
Sgroi, DC .
CANCER CELL, 2004, 5 (06) :607-616
[27]   Total loss of MHC class I is an independent indicator of good prognosis in breast cancer [J].
Madjd, Z ;
Spendlove, I ;
Pinder, SE ;
Ellis, IO ;
Durrant, LG .
INTERNATIONAL JOURNAL OF CANCER, 2005, 117 (02) :248-255
[28]   An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival [J].
Miller, LD ;
Smeds, J ;
George, J ;
Vega, VB ;
Vergara, L ;
Ploner, A ;
Pawitan, Y ;
Hall, P ;
Klaar, S ;
Liu, ET ;
Bergh, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (38) :13550-13555
[29]   Accurate detection of aneuploidies in array CGH and gene expression microarray data [J].
Myers, CL ;
Dunham, MJ ;
Kung, SY ;
Troyanskaya, OG .
BIOINFORMATICS, 2004, 20 (18) :3533-3543
[30]  
Nessling M, 2005, CANCER RES, V65, P439