Synchronization of coupled time-delay systems: Analytical estimations

被引:204
作者
Pyragas, K [1 ]
机构
[1] Inst Semicond Phys, LT-2600 Vilnius, Lithuania
关键词
D O I
10.1103/PhysRevE.58.3067
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The synchronization threshold of coupled time-delay chaotic systems is estimated by two different analytical approaches. One of them is based on the Krasovskii-Lyapunov theory that represents an extension of the second Lyapunov method for delay differential equations. Another approach uses a perturbation theory of large delay time. The analytical expression relating synchronization threshold to the maximal Lyapunov exponent of uncoupled driving and response subsystems is derived. The analytical results are compared with the numerical simulations for two coupled Mackey-Glass systems.
引用
收藏
页码:3067 / 3071
页数:5
相关论文
共 18 条
  • [1] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [2] Transforming signals with chaotic synchronization
    Carroll, TL
    Heagy, JF
    Pecora, LM
    [J]. PHYSICAL REVIEW E, 1996, 54 (05) : 4676 - 4680
  • [3] ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM
    Cuomo, Kevin M.
    Oppenheim, Alan V.
    Strogatz, Steven H.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06): : 1629 - 1638
  • [4] CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS
    CUOMO, KM
    OPPENHEIM, AV
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 65 - 68
  • [5] FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
  • [6] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [7] Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization
    Gauthier, DJ
    Bienfang, JC
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (09) : 1751 - 1754
  • [8] Generalized synchronization of chaos in electronic circuit experiments
    Kittel, A
    Parisi, J
    Pyragas, K
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (3-4) : 459 - 471
  • [9] GENERAL-APPROACH FOR CHAOTIC SYNCHRONIZATION WITH APPLICATIONS TO COMMUNICATION
    KOCAREV, L
    PARLITZ, U
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (25) : 5028 - 5031
  • [10] KOCAREV L, 1992, INT J BIFURCAT CHAOS, V2, P709