Four as the expectation value of the set of all positive integers and the geometry of four manifolds

被引:4
作者
El Naschie, MS [1 ]
机构
[1] DAMTP, Cambridge, England
关键词
D O I
10.1016/S0960-0779(98)00128-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, it is shown that the expectation value of the set of all positive integers is four and that this result is connected to the geometry of four manifolds. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1625 / 1629
页数:5
相关论文
共 8 条
[1]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[2]  
Donaldson SK., 1997, The Geometry of 4-Manifolds
[3]   On the uncertainty of Cantorian geometry and the two-slit experiment [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 1998, 9 (03) :517-529
[4]   COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 1998, 9 (08) :1445-1471
[5]   Penrose universe and Cantorian spacetime as a model for noncommutative quantum geometry [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 1998, 9 (06) :931-933
[6]  
ELNASCHIE MS, IN PRESS CHAOS SOLIT
[7]  
KINNEY JJ, 1997, PROBABILITY
[8]  
Pisot C., 1946, COMMENT MATH HELV, V19, P153