Finite-time stability theorem of stochastic nonlinear systems

被引:253
作者
Chen, Weisheng [1 ,2 ]
Jiao, L. C. [2 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710071, Peoples R China
[2] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, China Inst Intelligent Informat Proc, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Finite time stability; Stochastic nonlinear systems; Stochastic settling time function; Lyapunov method; STABILIZATION;
D O I
10.1016/j.automatica.2010.08.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new concept of finite-time stability called stochastically finite-time attractiveness is defined for a class of stochastic nonlinear systems described by the Ito differential equation The settling time function is a stochastic variable and its expectation is finite A theorem and a corollary are given to verify the finite-time attractiveness of stochastic systems based on Lyapunov functions Two simulation examples are provided to illustrate the applications of the theorem and the corollary established in this paper (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:2105 / 2108
页数:4
相关论文
共 27 条
[1]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[2]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[3]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[4]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[5]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[6]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[7]   Stabilization of stochastic nonlinear systems driven by noise of unknown covariance [J].
Deng, H. ;
Krstić, M. ;
Williams, R.J. .
1600, Institute of Electrical and Electronics Engineers Inc. (46)
[8]   Finite-Time Stabilization of Linear Time-Varying Continuous Systems [J].
Garcia, Germain ;
Tarbouriech, Sophie ;
Bernussou, Jacques .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :364-369
[9]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[10]   FINITE TIME STOCHASTIC STABILITY AND ANALYSIS OF TRACKING SYSTEMS [J].
KUSHNER, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1966, AC11 (02) :219-+