T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells

被引:176
作者
Cheng, Guoyan [1 ]
Yu, Aixin [1 ]
Malek, Thomas R. [1 ,2 ]
机构
[1] Univ Miami, Miller Sch Med, Dept Microbiol & Immunol, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Diabet Res Inst, Miami, FL 33136 USA
关键词
T-regulatory cells; interleukin; 2; lineage plasticity and stability; tolerance; suppression; IL-2R signaling thresholds; immunotherapy; TGF-BETA; INTERLEUKIN-2; RECEPTOR; CUTTING EDGE; FOXP3; EXPRESSION; LYMPHOID HOMEOSTASIS; LETHAL AUTOIMMUNITY; LINEAGE COMMITMENT; REG-CELLS; MICE; INDUCTION;
D O I
10.1111/j.1600-065X.2011.01004.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Signaling through the interleukin-2 receptor (IL-2R) contributes to T-cell tolerance by controlling three important aspects of regulatory T-cell (Treg) biology. IL-2 is essential for thymic Treg development and regulates Treg homeostasis and suppressive function. Analogous to activated conventional T lymphocytes, IL-2R signaling also plays an important part in Treg cell growth, survival, and effector differentiation. However, Treg cells somewhat distinctively assimilate IL-2R signaling. In particular, Treg cells require essentially only IL-2-dependent receptor proximal signal transducer and activator of transcription 5 (Stat5) activation, as they contain inhibitory pathways to minimize IL-2R-dependent activation of the phosphatidyinositol 3-kinase/Akt pathway. Moreover, many IL-2R-dependent activities, including full induction of Foxp3 expression, in Treg cells require minimal and transient Stat5 activation. Thus, Treg cells are equipped to sense and then develop and function within biological niches containing minimal IL-2. These distinguishing features of IL-2R signaling provide a mechanistic underpinning for using IL-2 as an agent to selectively target Treg cells in immunotherapy to induce tolerance in autoimmune diseases and in allogeneic transplant recipients.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 112 条
[31]   Cytokine-dependent blimp-1 expression in activated T cells inhibits IL-2 production [J].
Gong, Dapeng ;
Malek, Thomas R. .
JOURNAL OF IMMUNOLOGY, 2007, 178 (01) :242-252
[32]   IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells [J].
Grinberg-Bleyer, Yenkel ;
Baeyens, Audrey ;
You, Sylvaine ;
Elhage, Rima ;
Fourcade, Gwladys ;
Gregoire, Sylvie ;
Cagnard, Nicolas ;
Carpentier, Wassila ;
Tang, Qizhi ;
Bluestone, Jeffrey ;
Chatenoud, Lucienne ;
Klatzmann, David ;
Salomon, Benoit L. ;
Piaggio, Eliane .
JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (09) :1871-1878
[33]   Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature [J].
Hill, Jonathan A. ;
Feuerer, Markus ;
Tash, Kaley ;
Haxhinasto, Sokol ;
Perez, Jasmine ;
Melamed, Rachel ;
Mathis, Diane ;
Benoist, Christophe .
IMMUNITY, 2007, 27 (05) :786-800
[34]   Control of regulatory T cell development by the transcription factor Foxp3 [J].
Hori, S ;
Nomura, T ;
Sakaguchi, S .
SCIENCE, 2003, 299 (5609) :1057-1061
[35]   IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508 [J].
Hwang, ES ;
Hong, JH ;
Glimcher, LH .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (09) :1289-1300
[36]   Special regulatory T-cell review: regulatory T cells and the intestinal tract - patrolling the frontier [J].
Izcue, Ana ;
Powrie, Fiona .
IMMUNOLOGY, 2008, 123 (01) :6-10
[37]  
JOHNSON K, 1994, EUR CYTOKINE NETW, V5, P23
[38]   Control of Regulatory T Cell Lineage Commitment and Maintenance [J].
Josefowicz, Steven Z. ;
Rudensky, Alexander .
IMMUNITY, 2009, 30 (05) :616-625
[39]   Prolonged Interleukin-2Rα Expression on Virus-Specific CD8+ T Cells Favors Terminal-Effector Differentiation In Vivo [J].
Kalia, Vandana ;
Sarkar, Surojit ;
Subramaniam, Shruti ;
Haining, W. Nicholas ;
Smith, Kendall A. ;
Ahmed, Rafi .
IMMUNITY, 2010, 32 (01) :91-103
[40]   Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice [J].
Kennedy, MK ;
Glaccum, M ;
Brown, SN ;
Butz, EA ;
Viney, JL ;
Embers, M ;
Matsuki, N ;
Charrier, K ;
Sedger, L ;
Willis, CR ;
Brasel, K ;
Morrissey, PJ ;
Stocking, K ;
Schuh, JCL ;
Joyce, S ;
Peschon, JJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 191 (05) :771-780