DNA folding: Structural and mechanical properties of the two-angle model for chromatin

被引:93
作者
Schiessel, H
Gelbart, WM
Bruinsma, R
机构
[1] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0006-3495(01)76164-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present a theoretical analysis of the structural and mechanical properties of the 30-nm chromatin fiber. Our study is based on the two-angle model introduced by Woodcock et at. (Woodcock, C. L., S. A. Grigoryev, R. A. Horowitz, and N. Whitaker. 1993. Proc. Natl. Acad. Sci. USA. 90:9021-9025) that describes the chromatin fiber geometry in terms of the entry-exit angle of the nucleosomal DNA and the rotational setting of the neighboring nucleosomes with respect to each other. We analytically explore the different structures that arise from this building principle, and demonstrate that the geometry with the highest density is close to the one found in native chromatin fibers under physiological conditions. On the basis of this model we calculate mechanical properties of the fiber under stretching. We obtain expressions for the stress-strain characteristics that show good agreement with the results of recent stretching experiments (Cui, Y., and C. Bustamante. 2000. Proc. Natl. Acad. Sci USA. 97:127-132) and computer simulations (Katritch, V., C. Bustamante, and W. K. Olson. 2000. J. Mol. Biol. 295:29-40), and which provide simple physical insights into correlations between the structural and elastic properties of chromatin.
引用
收藏
页码:1940 / 1956
页数:17
相关论文
共 38 条
[1]   Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin [J].
Bednar, J ;
Horowitz, RA ;
Grigoryev, SA ;
Carruthers, LM ;
Hansen, JC ;
Koster, AJ ;
Woodcock, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14173-14178
[2]   CHROMATIN CONFORMATION AND SALT-INDUCED COMPACTION - 3-DIMENSIONAL STRUCTURAL INFORMATION FROM CRYOELECTRON MICROSCOPY [J].
BEDNAR, J ;
HOROWITZ, RA ;
DUBOCHET, J ;
WOODCOCK, CL .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1365-1376
[3]   Dinucleosomes show compaction by ionic strength, consistent with bending of linker DNA [J].
Butler, PJG ;
Thomas, JO .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (03) :401-407
[4]   DNA: An extensible molecule [J].
Cluzel, P ;
Lebrun, A ;
Heller, C ;
Lavery, R ;
Viovy, JL ;
Chatenay, D ;
Caron, F .
SCIENCE, 1996, 271 (5250) :792-794
[5]  
CROTHERS DM, 1992, METHOD ENZYMOL, V212, P3
[6]   Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure [J].
Cui, Y ;
Bustamante, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :127-132
[7]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[8]  
Doi M., 1986, The Theory of Polymer Dynamics
[9]   SOLENOIDAL MODEL FOR SUPERSTRUCTURE IN CHROMATIN [J].
FINCH, JT ;
KLUG, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (06) :1897-1901
[10]   Self-assembly in vivo [J].
Fraden, S ;
Kamien, RD .
BIOPHYSICAL JOURNAL, 2000, 78 (05) :2189-2190