Although significant advances have been made in understanding terrestrial carbon cycling, there is still a large uncertainty about the variability of carbon (C) fluxes at local scales. Using a carbon mass-balance approach, I investigated the relationships between fine detritus production and soil respiration for five tropical tree species established on 16-year-old plantations. Total fine detritus production ranged from 0.69 to 1.21 kg C center dot m(-2 center dot)year(-1) with significant differences among species but with no correlation between litterfall and fine-root growth. Soil CO2 emissions ranged from 1.61 to 2.36 kg C center dot m(-2). year(-1) with no significant differences among species. Soil respiration increased with fine-root production but not with litterfall, suggesting that soil C emissions may depend more on belowground inputs or that both fine root production and soil respiration are similarly influenced by an external factor. Estimates of root + rhizosphere respiration comprised 52% of total soil respiration on average, and there was no evidence that rhizosphere respiration was associated with fine-root growth rates among species. These results suggest that inherent differences in fine-root production among species, rather than differences in aboveground litterfall, might play a main role explaining local-scale, among-forest variations in soil C emissions.