Two-dimensional copolymers and exact conformal multifractality

被引:36
作者
Duplantier, B [1 ]
机构
[1] Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
[2] Inst Henri Poincare, F-75231 Paris 05, France
关键词
D O I
10.1103/PhysRevLett.82.880
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider in two dimensions (2D) the most general star-shaped copolymer, mixing random walks (RW) or self-avoiding walks (SAW) with specific mutual avoidance interactions thereof. Its exact conformal scaling dimensions in the plane are derived from an algebraic structure existing on a random lattice (2D quantum gravity). The multifractal dimensions tau(n) of the harmonic measure of a 2D RW or SAW are conformal dimensions of certain star copolymers. The exact associated f(alpha) are identical for a RW or a SAW in 2D. These are the first examples of conformal multifractality.
引用
收藏
页码:880 / 883
页数:4
相关论文
共 30 条
[21]   RANDOM SURFACES OF ARBITRARY GENUS - EXACT RESULTS FOR D=0 AND -2 DIMENSIONS [J].
KOSTOV, IK ;
MEHTA, ML .
PHYSICS LETTERS B, 1987, 189 (1-2) :118-124
[22]  
LAWLER G, UNPUB
[23]  
Lawler G F., 1991, Intersections of Random Walks
[24]   ON THE DISTORTION OF BOUNDARY SETS UNDER CONFORMAL-MAPPINGS [J].
MAKAROV, NG .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1985, 51 (SEP) :369-384
[25]   INTERMITTENT TURBULENCE IN SELF-SIMILAR CASCADES - DIVERGENCE OF HIGH MOMENTS AND DIMENSION OF CARRIER [J].
MANDELBROT, BB .
JOURNAL OF FLUID MECHANICS, 1974, 62 (JAN23) :331-358
[26]  
Nienhuis B., 1987, PHASE TRANSITIONS CR, V11
[27]  
Polyakov A. M., 1987, MOD PHYS LETT A, V2, P893, DOI [DOI 10.1142/S0217732387001130, 10.1142/S0217732387001130]
[28]   Copolymer networks and stars: Scaling exponents [J].
von Ferber, C ;
Holovatch, Y .
PHYSICAL REVIEW E, 1997, 56 (06) :6370-6386
[29]   Operator product expansion on a fractal: The short chain expansion for polymer networks [J].
vonFerber, C .
NUCLEAR PHYSICS B, 1997, 490 (03) :511-542
[30]   Copolymer networks: Multifractal dimension spectra in polymer field theory [J].
VonFerber, C ;
Holovatch, Y .
EUROPHYSICS LETTERS, 1997, 39 (01) :31-36