Annual to sub-annual resolution of multiple trace-element trends in speleothems

被引:147
作者
Fairchild, IJ [1 ]
Baker, A
Borsato, A
Frisia, S
Hinton, RW
McDermott, F
Tooth, AF
机构
[1] Univ Keele, Sch Earth Sci & Geog, Keele ST5 5BG, Staffs, England
[2] Newcastle Univ, Dept Geog, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Museo Tridentino Sci Nat, I-38100 Trento, Italy
[4] Univ Edinburgh, Dept Geol & Geophys, Edinburgh EH9 3JW, Midlothian, Scotland
[5] Univ Coll Dublin, Dept Geol, Dublin 4, Ireland
[6] Univ Innsbruck, Inst Geol & Palaeontol, A-6020 Innsbruck, Austria
关键词
speleothem; carbonates; geochemistry; phosphates; palaeoclimate;
D O I
10.1144/jgs.158.5.831
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study aims to establish evidence For the widespread existence of preserved high-resolution trace element variations in speleothems that may have climatic significance. Ion microprobe analysis of speleothems reveals that annual to sub-annual variations in element chemistry exist at five, shallow western European cave sites (Crag Cave. County Kerry and Ballynamintra, County Waterford, Ireland; Uamh an Tartair, Sutherland. Scotland; Grotte Pere-Noel, Belgium, Grotta di Ernesto, NE Italy) with widely varying climatic, geomorphic and geological settings. The variations are not restricted to species (Mg, Sr and Ba) known to substitute directly for Ca in the calcite lattice, but include H, F, Na and P. Phosphorus (as phosphate) displays the greatest variability and may have the most significance as a proxy for the seasonal temperature cycle because of its role as a nutrient element. The technique allow's estimation of growth rate of speleothems at any interval of interest, which is one of several possible uses in palaeoclimatology.
引用
收藏
页码:831 / 841
页数:11
相关论文
共 47 条
[31]   Holocene climate variability in Europe:: Evidence from δ18O, textural and extension-rate variations in three speleothems [J].
McDermott, F ;
Frisia, S ;
Huang, YM ;
Longinelli, A ;
Spiro, B ;
Heaton, THE ;
Hawkesworth, CJ ;
Borsato, A ;
Keppens, E ;
Fairchild, IJ ;
van der Borg, K ;
Verheyden, S ;
Selmo, E .
QUATERNARY SCIENCE REVIEWS, 1999, 18 (8-9) :1021-1038
[32]   THE INFLUENCE OF IMPURITIES ON THE GROWTH-RATE OF CALCITE [J].
MEYER, HJ .
JOURNAL OF CRYSTAL GROWTH, 1984, 66 (03) :639-646
[33]  
MOORE GW, 1962, NATL SPELEOLOGICAL S, V24, P95
[34]  
MUCCI A, 1990, REV AQUAT SCI, V3, P217
[35]   RELATIONSHIP BETWEEN SURFACE-STRUCTURE, GROWTH-MECHANISM, AND TRACE-ELEMENT INCORPORATION IN CALCITE [J].
PAQUETTE, J ;
REEDER, RJ .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (04) :735-749
[36]  
PAQUETTE J, 1990, GEOLOGY, V18, P1244, DOI 10.1130/0091-7613(1990)018<1244:NTOCZI>2.3.CO
[37]  
2
[38]   THE COPRECIPITATION OF SR-2+ WITH CALCITE AT 25-DEGREES-C AND 1-ATM [J].
PINGITORE, NE ;
EASTMAN, MP .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1986, 50 (10) :2195-2203
[39]   MODE OF INCORPORATION OF SR2+ IN CALCITE - DETERMINATION BY X-RAY ABSORPTION-SPECTROSCOPY [J].
PINGITORE, NE ;
LYTLE, FW ;
DAVIES, BM ;
EASTMAN, MP ;
ELLER, PG ;
LARSON, EM .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (04) :1531-1538
[40]   Surface speciation models of calcite and dolomite/aqueous solution interfaces and their spectroscopic evaluation [J].
Pokrovsky, OS ;
Mielczarski, JA ;
Barres, O ;
Schott, J .
LANGMUIR, 2000, 16 (06) :2677-2688