An accelerated procedure for recursive feature ranking on microarray data

被引:56
作者
Furlanello, C [1 ]
Serafini, M [1 ]
Merler, S [1 ]
Jurman, G [1 ]
机构
[1] ITC Irst, I-38050 Trento, Italy
关键词
entropy-based recursive feature elimination; microarray; support vector machines;
D O I
10.1016/S0893-6080(03)00103-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a new wrapper algorithm for fast feature ranking in classification problems. The Entropy-based Recursive Feature Elimination (E-RFE) method eliminates chunks of uninteresting features according to the entropy of the weights distribution of a SVM classifier. With specific regard to DNA microarray datasets, the method is designed to support computationally intensive model selection in classification problems in which the number of features is much larger than the number of samples. We test E-RFE on synthetic and real data sets, comparing it with other SVM-based methods. The speed-up obtained with E-RFE supports predictive modeling on high dimensional microarray data. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:641 / 648
页数:8
相关论文
共 16 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[4]   Molecular portraits and the family tree of cancer [J].
Chung, CH ;
Bernard, PS ;
Perou, CM .
NATURE GENETICS, 2002, 32 (Suppl 4) :533-540
[5]  
Cristianini N, 2000, Intelligent Data Analysis: An Introduction
[6]  
FURLANELLO C, 2002, 021213 TR ITC IRST
[7]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[8]   Bayesian automatic relevance determination algorithms for classifying gene expression data [J].
Li, Y ;
Campbell, C ;
Tipping, M .
BIOINFORMATICS, 2002, 18 (10) :1332-1339
[9]   Tumor classification by partial least squares using microarray gene expression data [J].
Nguyen, DV ;
Rocke, DM .
BIOINFORMATICS, 2002, 18 (01) :39-50
[10]   A molecular signature of metastasis in primary solid tumors [J].
Ramaswamy, S ;
Ross, KN ;
Lander, ES ;
Golub, TR .
NATURE GENETICS, 2003, 33 (01) :49-54