A New Lower Limit for the Ultimate Breaking Strain of Carbon Nanotubes

被引:69
作者
Chang, Chia-Chi [1 ]
Hsu, I-Kai [2 ]
Aykol, Mehmet [3 ]
Hung, Wei-Hsuan [2 ]
Chen, Chun-Chung [3 ]
Cronin, Stephen B. [1 ,3 ]
机构
[1] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Raman; strain; CNTs; individual; strength; stress; CVD; RAMAN-SPECTROSCOPY; STRENGTH; DEFORMATION; COMPOSITES;
D O I
10.1021/nn100946q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We apply immense strain to ultralong, suspended, single-walled carbon nanotubes while monitoring their Raman spectra. We can achieve strains up to 13.7 +/- 0.3% without slippage, breakage, or defect formation based on the observation of reversible change in Raman spectra. This is more than twice that of previous observations. The rate of G band downshift with strain is found to span a wide range from -6.2 to -23.6 cm(-1)/% strain. Under these immense strains, the G band is observed to downshift by up to 157 cm(-1) (from 1592 to 1435 cm(-1)). Interestingly, under these significant lattice distortions, we observe no detectable D band Raman intensity. Also, we do not observe any broadening of the G band line width until a threshold downshift of Delta omega(g) > 75 cm(-1) is achieved at high strains, beyond which the fwhm of the G band increases sharply and reversibly. On the basis of a theoretical nonlinear stress strain response, we estimate the maximum applied stress of the nanotubes in this study to be 99 GPa with a strength-to-weight ratio of almost 74 000 kN . m/kg, which is 30 times that of Kevlar and 117 times that of steel.
引用
收藏
页码:5095 / 5100
页数:6
相关论文
共 43 条
[21]   Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality [J].
Maiti, A ;
Svizhenko, A ;
Anantram, MP .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-126805
[22]   Direct observation of the deformation and the band gap change from an individual single-walled carbon nanotube under uniaxial strain [J].
Maki, Hideyuki ;
Sato, Testuya ;
Ishibashi, Koji .
NANO LETTERS, 2007, 7 (04) :890-895
[23]   Tuning carbon nanotube band gaps with strain [J].
Minot, ED ;
Yaish, Y ;
Sazonova, V ;
Park, JY ;
Brink, M ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2003, 90 (15) :4
[24]   Mechanism of strain release in carbon nanotubes [J].
Nardelli, MB ;
Yakobson, BI ;
Bernholc, J .
PHYSICAL REVIEW B, 1998, 57 (08) :R4277-R4280
[25]   On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics [J].
Pugno, Nicola M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (33) :S1971-S1990
[26]   A tunable carbon nanotube electromechanical oscillator [J].
Sazonova, V ;
Yaish, Y ;
Üstünel, H ;
Roundy, D ;
Arias, TA ;
McEuen, PL .
NATURE, 2004, 431 (7006) :284-287
[27]   Load transfer in carbon nanotube epoxy composites [J].
Schadler, LS ;
Giannaris, SC ;
Ajayan, PM .
APPLIED PHYSICS LETTERS, 1998, 73 (26) :3842-3844
[28]   Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering [J].
Sfeir, MY ;
Wang, F ;
Huang, LM ;
Chuang, CC ;
Hone, J ;
O'Brien, SP ;
Heinz, TF ;
Brus, LE .
SCIENCE, 2004, 306 (5701) :1540-1543
[29]   Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes [J].
Son, Hyungbin ;
Samsonidze, Georgii G. ;
Kong, Jing ;
Zhang, Yingying ;
Duan, Xiaojie ;
Zhang, Jin ;
Liu, Zhongfan ;
Dresselhaus, Mildred S. .
APPLIED PHYSICS LETTERS, 2007, 90 (25)
[30]   Strain-induced interference effects on the resonance Raman cross section of carbon nanotubes -: art. no. 217403 [J].
Souza, AG ;
Kobayashi, N ;
Jiang, J ;
Grüneis, A ;
Saito, R ;
Cronin, SB ;
Mendes, J ;
Samsonidze, GG ;
Dresselhaus, GG ;
Dresselhaus, MS .
PHYSICAL REVIEW LETTERS, 2005, 95 (21)