Reinsurance control in a model with liabilities of the fractional Brownian motion type

被引:9
作者
Frangos, N. E.
Vrontos, S. D.
Yannacopoulos, A. N.
机构
[1] Athens Univ Econ & Business, Dept Stat, Athens 10434, Greece
[2] Univ Aegean, Dept Stat & Actuarial Financial Math, Karlovassi 83200, Samos, Greece
关键词
reinsurance control; proportional reinsurance; fractional Brownian motion;
D O I
10.1002/asmb.680
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a model for reinsurance control for an insurance firm in the case where the liabilities are driven by fractional Brownian motion, a stochastic process exhibiting long-range dependence. The problem is transformed to a nonlinear programming problem, the solution of which provides the optimal reinsurance policy. The effect of various parameters of the model, such as the safety loading of the reinsurer and the insurer, the Hurst parameter, etc. on the optimal reinsurance program is studied in some detail. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:403 / 428
页数:26
相关论文
共 34 条
[1]  
ASMUSSEN S, 1999, 5 U AARH
[2]   Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model [J].
Azcue, P ;
Muler, N .
MATHEMATICAL FINANCE, 2005, 15 (02) :261-308
[3]  
Bazaraa M.S., 1993, NONLINEAR PROGRAMMIN
[4]  
Brody D. C., 2002, Quantitative Finance, V2, P189, DOI 10.1088/1469-7688/2/3/302
[5]  
Buhlmann Hans., 1970, MATH MODELS RISK THE
[6]   A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) :1040-1058
[7]   Ruin probability for Gaussian integrated processes [J].
Debicki, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 98 (01) :151-174
[8]  
Doukhan P., 2003, Theory and applications of long-range dependence
[9]   A general fractional white noise theory and applications to finance [J].
Elliott, RJ ;
van der Hoek, J .
MATHEMATICAL FINANCE, 2003, 13 (02) :301-330
[10]  
Embrechts P, 2002, PRIN SER APPL MATH, P1