A general fractional white noise theory and applications to finance

被引:180
作者
Elliott, RJ
van der Hoek, J
机构
[1] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
[2] Univ Adelaide, Dept Appl Math, Adelaide, SA, Australia
关键词
fractional Brownian motion; fractional white noise; Girsanov's theorem; Clark-Ocone representation theorem; fractional Black-Scholes market; fractional Ito isometry;
D O I
10.1111/1467-9965.00018
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present a new framework for fractional Brownian motion in which processes with all indices can be considered under the same probability measure. Our results extend recent contributions by Hu, Oksendal, Duncan, Pasik-Duncan, and others. As an application we develop option pricing in a fractional Black-Scholes market with a noise process driven by a sum of fractional Brownian motions with various Hurst indices.
引用
收藏
页码:301 / 330
页数:30
相关论文
共 19 条
[1]  
AASE K, 2000, FINANC STOCH, V4, P465
[2]   Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns [J].
Andersen, Torben G. ;
Bollerslev, Tim .
JOURNAL OF FINANCE, 1997, 52 (03) :1203-1203
[3]  
Brody D. C., 2002, Quantitative Finance, V2, P189, DOI 10.1088/1469-7688/2/3/302
[4]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[5]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[6]  
HIDA T, 1993, WHITE NOISE ANAL
[7]   A class of reciprocal functions [J].
Hille, E .
ANNALS OF MATHEMATICS, 1926, 27 :427-464
[8]  
Holden H., 1996, Stochastic Partial Differential Equations
[9]  
Hu Y., 2000, Fractional White noise calculus and Application to Finance
[10]  
Ito K., 1951, Journal of the Mathematical Society of Japan, V3, P157, DOI 10.2969/jmsj/00310157