Stochastic calculus for fractional Brownian motion - I. Theory

被引:387
作者
Duncan, TE [1 ]
Hu, YZ [1 ]
Pasik-Duncan, B [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
fractional Brownian motion; stochastic calculus; Ito integral; Stratonovich integral; Ito formula; Wick product; Ito calculus; multiple Ito integrals; multiple Stratonovich integrals;
D O I
10.1137/S036301299834171X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a stochastic calculus is given for the fractional Brownian motions that have the Hurst parameter in (1/2, 1). A stochastic integral of Ito type is defined for a family of integrands so that the integral has zero mean and an explicit expression for the second moment. This integral uses the Wick product and a derivative in the path space. Some Ito formulae (or change of variables formulae) are given for smooth functions of a fractional Brownian motion or some processes related to a fractional Brownian motion. A stochastic integral of Stratonovich type is defined and the two types of stochastic integrals are explicitly related. A square integrable functional of a fractional Brownian motion is expressed as an infinite series of orthogonal multiple integrals.
引用
收藏
页码:582 / 612
页数:31
相关论文
共 24 条
[1]  
[Anonymous], T AM SOC CIV ENG
[2]  
[Anonymous], J MATH SOC JPN
[3]  
[Anonymous], 1983, New York
[4]  
[Anonymous], 1956, Proc. Inst. Civ. Eng., V5, P519, DOI DOI 10.1680/IICEP.1956.11503
[5]  
[Anonymous], 1993, QUANTUM PROBABILITY, DOI DOI 10.1007/978-3-662-21558-6
[6]  
Beckenbach E. F., 1971, INEQUALITIES
[7]  
Dai W, 1996, J APPL MATH STOCHAST, V10, P439, DOI DOI 10.1155/S104895339600038X
[8]  
DASGUPTA A, IN PRESS APPL MATH O
[9]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[10]  
Dellacherie C., 1982, PROBABILITY POTENT B