Basic microarray analysis: grouping and feature reduction

被引:101
作者
Raychaudhuri, S
Sutphin, PD
Chang, JT
Altman, RB
机构
[1] Stanford Univ, Dept Med, Stanford Med Informat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA
关键词
D O I
10.1016/S0167-7799(01)01599-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
DNA microarray technologies are useful for addressing a broad range of biological problems - including the measurement of mRNA expression levels in target cells. These studies typically produce large data sets that contain measurements on thousands of genes under hundreds of conditions. There is a critical need to summarize this data and to pick out the important details. The most common activities, therefore, are to group together microarray data and to reduce the number of features. Both of these activities can be done using only the raw microarray data (unsupervised methods) or using external information that provides labels for the microarray data (supervised methods). We briefly review supervised and unsupervised methods for grouping and reducing data in the context of a publicly available suite of tools called CLEAVER, and illustrate their application on a representative data set collected to study lymphoma.
引用
收藏
页码:189 / 193
页数:5
相关论文
共 15 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[3]   Accessing genetic information with high-density DNA arrays [J].
Chee, M ;
Yang, R ;
Hubbell, E ;
Berno, A ;
Huang, XC ;
Stern, D ;
Winkler, J ;
Lockhart, DJ ;
Morris, MS ;
Fodor, SPA .
SCIENCE, 1996, 274 (5287) :610-614
[4]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[5]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[6]   Making the most of microarray data [J].
Gaasterland, T ;
Bekiranov, S .
NATURE GENETICS, 2000, 24 (03) :204-206
[7]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[8]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430
[9]   On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning [J].
Kell, DB ;
King, RD .
TRENDS IN BIOTECHNOLOGY, 2000, 18 (03) :93-98
[10]  
Raychaudhuri S, 2000, Pac Symp Biocomput, P455