Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations

被引:94
作者
Carter, CW [1 ]
LeFebvre, BC
Cammer, SA
Tropsha, A
Edgell, MH
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Sch Pharm, Div Med Chem & Nat Prod, Lab Mol Modeling, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA
关键词
Delaunay tessellation; database-derived potentials; elementary tertiary motifs; multivariate statistics; conformational entropy;
D O I
10.1006/jmbi.2001.4906
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutational experiments show how changes in the hydrophobic cores of proteins affect their stabilities. Here, we estimate these effects computationally, using four-body likelihood potentials obtained by simplicial neighborhood analysis of protein packing (SNAPP). In this procedure, the volume of a known protein structure is tiled with tetrahedra having the center of mass of one amino acid side-chain at each vertex. Log-likelihoods are computed for the 8855 possible tetrahedra with equivalent compositions from structural databases and amino acid frequencies. The sum of these four-body potentials for tetrahedra present in a given protein yields the SNAPP score. Mutations change this sum by changing the compositions of tetrahedra containing the mutated residue and their related potentials. Linear correlation coefficients between experimental mutational stability changes, Delta(DeltaG(unfold)), and those based on SNAPP scoring range from 0.70 to 0.94 for hydrophobic core mutations in five different proteins. Accurate predictions for the effects of hydrophobic core mutations can therefore be obtained by virtual mutagenesis, based on changes to the total SNAPP likelihood potential. Significantly, slopes of the relation between Delta(DeltaG(unfold)) and Delta SNAPP for different proteins are statistically distinct, and we show that these protein-specific effects can be estimated using the average SNAPP score per residue, which is readily derived from the analysis itself. This result enhances the predictive value of statistical potentials and supports previous suggestions that "comparable" mutations in different proteins may lead to different Delta(DeltaG(unfold)) values because of differences in their flexibility and/or conformational entropy. (C) 2001 Academic Press.
引用
收藏
页码:625 / 638
页数:14
相关论文
共 76 条
[1]  
ALBER T, 1987, METHOD ENZYMOL, V154, P511
[2]   TEMPERATURE-SENSITIVE MUTATIONS OF BACTERIOPHAGE-T4 LYSOZYME OCCUR AT SITES WITH LOW MOBILITY AND LOW SOLVENT ACCESSIBILITY IN THE FOLDED PROTEIN [J].
ALBER, T ;
SUN, DP ;
NYE, JA ;
MUCHMORE, DC ;
MATTHEWS, BW .
BIOCHEMISTRY, 1987, 26 (13) :3754-3758
[3]   SOLVENT DENATURATION AND STABILIZATION OF GLOBULAR-PROTEINS [J].
ALONSO, DOV ;
DILL, KA .
BIOCHEMISTRY, 1991, 30 (24) :5974-5985
[4]  
Baldwin Enoch P., 1994, Current Opinion in Biotechnology, V5, P396, DOI 10.1016/0958-1669(94)90048-5
[5]   THE PROTEIN-FOLDING PROBLEM - THE NATIVE FOLD DETERMINES PACKING, BUT DOES PACKING DETERMINE THE NATIVE FOLD [J].
BEHE, MJ ;
LATTMAN, EE ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (10) :4195-4199
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]  
Betancourt MR, 1999, PROTEIN SCI, V8, P361
[8]   ALANINE SCANNING MUTAGENESIS OF THE ALPHA-HELIX-115-123 OF PHAGE-T4 LYSOZYME - EFFECTS ON STRUCTURE, STABILITY AND THE BINDING OF SOLVENT [J].
BLABER, M ;
BAASE, WA ;
GASSNER, N ;
MATTHEWS, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 246 (02) :317-330
[9]   CRYSTAL STRUCTURAL-ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE [J].
BUCKLE, AM ;
HENRICK, K ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :847-860
[10]  
CAMMER S, 2000, USING DELAUNAY TESSE