Ranking knots of random, globular polymer rings

被引:23
作者
Baiesi, M. [1 ]
Orlandini, E.
Stella, A. L.
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Florence, Sesto Fiorentin, Italy
[2] Sezione Ist Nazl Fis Nucl, I-50019 Florence, Sesto Fiorentin, Italy
[3] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy
[4] Univ Padua, Sez CNR INFM, I-35131 Padua, Italy
[5] Univ Padua, Sez INFN, I-35131 Padua, Italy
关键词
D O I
10.1103/PhysRevLett.99.058301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analysis of extensive simulations of interacting self-avoiding polygons on cubic lattice shows that the frequencies of different knots realized in a random, collapsed polymer ring decrease as a negative power of the ranking order, and suggests that the total number of different knots realized grows exponentially with the chain length. Relative frequencies of specific knots converge to definite values because the free energy per monomer, and its leading finite size corrections, do not depend on the ring topology, while a subleading correction only depends on the crossing number of the knots.
引用
收藏
页数:4
相关论文
共 32 条
[1]  
[Anonymous], 1949, Human behaviour and the principle of least-effort
[2]   DNA knots reveal a chiral organization of DNA in phage capsids [J].
Arsuaga, J ;
Vazquez, M ;
McGuirk, P ;
Trigueros, S ;
Sumners, DW ;
Roca, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (26) :9165-9169
[3]   Knotting probability of DNA molecules confined in restricted volumes:: DNA knotting in phage capsids [J].
Arsuaga, J ;
Vázquez, M ;
Trigueros, S ;
Sumners, D ;
Roca, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5373-5377
[4]   Scaling of a collapsed polymer globule in two dimensions [J].
Baiesi, M ;
Orlandini, E ;
Stella, AL .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[5]  
BAIESI M, UNPUB
[6]   RANDOM-PATHS AND RANDOM SURFACES ON A DIGITAL-COMPUTER [J].
BERG, B ;
FOERSTER, D .
PHYSICS LETTERS B, 1981, 106 (04) :323-326
[7]   POLYMERS AND G-ABSOLUTE-VALUE-PHI-4 THEORY IN FOUR DIMENSIONS [J].
DECARVALHO, CA ;
CARACCIOLO, S ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1983, 215 (02) :209-248
[8]  
Delbruck M, 1962, MATH PROBLEMS BIOL S, V14, P55
[9]   STATISTICAL MECHANICS WITH TOPOLOGICAL CONSTRAINTS .I. [J].
EDWARDS, SF .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (573P) :513-&
[10]   STATISTICAL-MECHANICS AND TOPOLOGY OF POLYMER-CHAINS [J].
FRANKKAMENETSKII, MD ;
LUKASHIN, AV ;
VOLOGODSKII, AV .
NATURE, 1975, 258 (5534) :398-402