Ranking knots of random, globular polymer rings

被引:23
作者
Baiesi, M. [1 ]
Orlandini, E.
Stella, A. L.
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Florence, Sesto Fiorentin, Italy
[2] Sezione Ist Nazl Fis Nucl, I-50019 Florence, Sesto Fiorentin, Italy
[3] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy
[4] Univ Padua, Sez CNR INFM, I-35131 Padua, Italy
[5] Univ Padua, Sez INFN, I-35131 Padua, Italy
关键词
D O I
10.1103/PhysRevLett.99.058301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analysis of extensive simulations of interacting self-avoiding polygons on cubic lattice shows that the frequencies of different knots realized in a random, collapsed polymer ring decrease as a negative power of the ranking order, and suggests that the total number of different knots realized grows exponentially with the chain length. Relative frequencies of specific knots converge to definite values because the free energy per monomer, and its leading finite size corrections, do not depend on the ring topology, while a subleading correction only depends on the crossing number of the knots.
引用
收藏
页数:4
相关论文
共 32 条
[21]   Polymer θ-point as a knot delocalization transition -: art. no. 031804 [J].
Orlandini, E ;
Stella, AL ;
Vanderzande, C .
PHYSICAL REVIEW E, 2003, 68 (03) :4
[22]   NEW SCALING FORM FOR THE COLLAPSED POLYMER PHASE [J].
OWCZAREK, AL ;
PRELLBERG, T ;
BRAK, R .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :951-953
[23]   PROBABILITY OF DNA KNOTTING AND THE EFFECTIVE DIAMETER OF THE DNA DOUBLE HELIX [J].
RYBENKOV, VV ;
COZZARELLI, NR ;
VOLOGODSKII, AV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (11) :5307-5311
[24]   KNOTTING OF A DNA CHAIN DURING RING-CLOSURE [J].
SHAW, SY ;
WANG, JC .
SCIENCE, 1993, 260 (5107) :533-536
[25]   Electrophoretic mobility of DNA knots [J].
Stasiak, A ;
Katritch, V ;
Bednar, J ;
Michoud, D ;
Dubochet, J .
NATURE, 1996, 384 (6605) :122-122
[26]   KNOTS IN SELF-AVOIDING WALKS [J].
SUMNERS, DW ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1689-1694
[27]   A deeply knotted protein structure and how it might fold [J].
Taylor, WR .
NATURE, 2000, 406 (6798) :916-919
[28]   Interacting self-avoiding walks and polygons in three dimensions [J].
Tesi, MC ;
vanRensburg, EJJ ;
Orlandini, E ;
Whittington, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :2451-2463
[29]  
VANDERZANDE C, 1998, LATTICE MODELS POLYM
[30]  
VANRENSBURG EJJ, 2002, PHYS KNOTS KNOTTING, V304, P125