Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions

被引:149
作者
Ellis, Jeffrey G. [1 ]
Dodds, Peter N. [1 ]
Lawrence, Gregory J. [1 ]
机构
[1] CSIRO Plant Ind, Canberra, ACT 2601, Australia
关键词
disease resistance genes; flax rust resistance; avirulence genes; effector proteins; rust fungi;
D O I
10.1146/annurev.phyto.45.062806.094331
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genetic studies of the flax-flax rust interaction led to the formulation of the gene-for-gene hypothesis and identified resistance genes (R) in the host plant and pathogenicity genes, including avirulence (Avr) and inhibitor of avirulence genes (I), in the rust pathogen. R genes hove now been cloned from four of the five loci in flax and all encode proteins of the (T) under bar oll, (I) under bar nterleukin-1 receptor, (R) under bar gene-(n) under bar ucleotide (b) under bar inding (s) under bar ite-(l) under bar eucine-(r) under bar ich (r) under bar epeat (TIR-NBS-LRR) class. Avr genes have been cloned from four loci in flax rust and encode small secreted proteins with no between locus similarity and no close homologs in current data bases. It is postulated that Avr proteins enter the host cell, have virulence effector functions, and in resistant host genotypes, are recognized by direct and specific interaction with host R proteins, leading to activation of rust resistance defense responses. Direct interaction between R and Avr proteins is the basis of gene-for-gene specificity in the flax-flax rust system and both R and Avr genes have the signatures of diversifying selection, suggesting the existence of a coevolutionary arms race between the host plant and its obligate rust pathogen.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 34 条
[1]   Host-parasite coevolutionary conflict between Arabidopsis and downy mildew [J].
Allen, RL ;
Bittner-Eddy, PD ;
Grenvitte-Briggs, LJ ;
Meitz, JC ;
Rehmany, AP ;
Rose, LE ;
Beynon, JL .
SCIENCE, 2004, 306 (5703) :1957-1960
[2]   Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region [J].
Anderson, PA ;
Lawrence, GJ ;
Morrish, BC ;
Ayliffe, MA ;
Finnegan, EJ ;
Ellis, JG .
PLANT CELL, 1997, 9 (04) :641-651
[3]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[4]   RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance [J].
Bieri, S ;
Mauch, S ;
Shen, QH ;
Peart, J ;
Devoto, A ;
Casais, C ;
Ceron, F ;
Schulze, S ;
Steinbiss, HH ;
Shirasu, K ;
Schulze-Lefert, P .
PLANT CELL, 2004, 16 (12) :3480-3495
[5]   The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response [J].
Boyes, DC ;
Nam, J ;
Dangl, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15849-15854
[6]   Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors [J].
Catanzariti, AM ;
Dodds, PN ;
Lawrence, GJ ;
Ayliffe, MA ;
Ellis, JG .
PLANT CELL, 2006, 18 (01) :243-256
[7]   Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes [J].
Dodds, Peter N. ;
Lawrence, Gregory J. ;
Catanzariti, Ann-Maree ;
Teh, Trazel ;
Wang, Ching-I. A. ;
Ayliffe, Michael A. ;
Kobe, Bostjan ;
Ellis, Jeffrey G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (23) :8888-8893
[8]   The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells [J].
Dodds, PN ;
Lawrence, GJ ;
Catanzariti, AM ;
Ayliffe, MA ;
Ellis, JG .
PLANT CELL, 2004, 16 (03) :755-768
[9]   Contrasting modes of evolution acting on the complex N locus for rust resistance in flax [J].
Dodds, PN ;
Lawrence, GJ ;
Ellis, JG .
PLANT JOURNAL, 2001, 27 (05) :439-453
[10]   Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax [J].
Dodds, PN ;
Lawrence, GJ ;
Ellis, JG .
PLANT CELL, 2001, 13 (01) :163-178