Simulation and experiment at high temperatures: Ultrafast folding of a thermophilic protein by nucleation-condensation

被引:46
作者
Ferguson, N
Day, R
Johnson, CM
Allen, MD
Daggett, V
Fersht, AR
机构
[1] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
[2] MRC, Ctr Prot Engn, Cambridge CB2 2QH, England
[3] MRC Ctr, MRC Mol Biol Lab, Cambridge CB2 2QH, England
关键词
fast folding; molecular dynamics; transition state; folding pathway; temperature-jump;
D O I
10.1016/j.jmb.2004.12.061
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We used Phi-value analysis to characterise the transition state for folding of a thermophilic protein at the relatively high temperature of 325 K. Phi(F) values for the folding of the three-helix bundle, peripheral subunit binding domain from Bacillus stearothermophilus (E3BD) were determined by temperature-jump experiments in the absence of chemical denaturants. E3BD folded in microseconds through a highly diffuse transition state. Excellent agreement was observed between experiment and the results from eight (independent) molecular dynamics simulations of unfolding at 373 K. We used a combination of heteronuclear NMR experiments and molecular dynamics simulations to characterise the denatured ensemble, and found that it contained very little persistent, residual structure. However, those regions that adopt helical structure in the native state were found by simulation to be poised for helix formation in the denatured state. These regions also had significant structure in the transition state for folding. The overall folding pathway appears to be nucleation-condensation. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:855 / 870
页数:16
相关论文
共 73 条
[1]   PROTEIN STABILITY CURVES [J].
BECKTEL, WJ ;
SCHELLMAN, JA .
BIOPOLYMERS, 1987, 26 (11) :1859-1877
[2]   THE USE OF DOUBLE MUTANTS TO DETECT STRUCTURAL-CHANGES IN THE ACTIVE-SITE OF THE TYROSYL-TRANSFER RNA-SYNTHETASE (BACILLUS-STEAROTHERMOPHILUS) [J].
CARTER, PJ ;
WINTER, G ;
WILKINSON, AJ ;
FERSHT, AR .
CELL, 1984, 38 (03) :835-840
[3]   The α-helix folds on the millisecond time scale [J].
Clarke, DT ;
Doig, AJ ;
Stapley, BJ ;
Jones, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) :7232-7237
[4]   Structure of the transition state for folding of a protein derived from experiment and simulation [J].
Daggett, V ;
Li, AJ ;
Itzhaki, LS ;
Otzen, DE ;
Fersht, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (02) :430-440
[5]   The present view of the mechanism of protein folding [J].
Daggett, V ;
Fersht, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (06) :497-502
[6]   Is there a unifying mechanism for protein folding? [J].
Daggett, V ;
Fersht, AR .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (01) :18-25
[7]   Increasing temperature accelerates protein unfolding without changing the pathway of unfolding [J].
Day, R ;
Bennion, BJ ;
Ham, S ;
Daggett, V .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (01) :189-203
[8]   Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics [J].
Deechongkit, S ;
Nguyen, H ;
Powers, ET ;
Dawson, PE ;
Gruebele, M ;
Kelly, JW .
NATURE, 2004, 430 (6995) :101-105
[9]   One-state downhill versus conventional protein folding [J].
Ferguson, N ;
Schartau, PJ ;
Sharpe, TD ;
Sato, S ;
Fersht, AR .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (02) :295-301
[10]   Rapid amyloid fiber formation from the fast-folding WW domain FBP28 [J].
Ferguson, N ;
Berriman, J ;
Petrovich, M ;
Sharpe, TD ;
Finch, JT ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :9814-9819