Enhanced analytical power of SDS-PAGE using machine learning algorithms

被引:20
作者
Supek, Fran [1 ]
Peharec, Petra [2 ]
Krsnik-Rasol, Marijana [2 ]
Smuc, Tomislav [1 ]
机构
[1] Rudjer Boskovic Inst, Div Elect, Informat Syst Lab, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Sci, Div Biol, Dept Mol Biol, Zagreb 41000, Croatia
关键词
1-D gel electrophoresis; data mining; differential protein expression; principal component analysis; support vector machines;
D O I
10.1002/pmic.200700555
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We aim to demonstrate that a complex plant tissue protein mixture can be reliably "finger-printed' by running conventional 1-D SDS-PAGE in bulk and analyzing gel banding patterns using machine learning methods. An unsupervised approach to filter noise and systemic biases (principal component analysis) was coupled to state-of-the-art supervised methods for classification (support vector machines) and attribute ranking (ReliefF) to improve tissue discrimination, visualization, and recognition of important gel regions.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 17 条
[11]   Numerical approaches for quantitative analysis of two-dimensional maps: A review of commercial software and home-made systems [J].
Marengo, E ;
Robotti, E ;
Antonucci, F ;
Cecconi, D ;
Campostrini, N ;
Righetti, PG .
PROTEOMICS, 2005, 5 (03) :654-666
[12]   Data analysis methods for detection of differential protein expression in two-dimensional gel electrophoresis [J].
Meunier, B ;
Bouley, J ;
Piec, I ;
Bernard, C ;
Picard, B ;
Hocquette, JF .
ANALYTICAL BIOCHEMISTRY, 2005, 340 (02) :226-230
[13]   Overcoming technical variation and biological variation in quantitative proteomics [J].
Molloy, MP ;
Brzezinski, EE ;
Hang, JQ ;
McDowell, MT ;
VanBogelen, RA .
PROTEOMICS, 2003, 3 (10) :1912-1919
[14]   Theoretical and empirical analysis of ReliefF and RReliefF [J].
Robnik-Sikonja, M ;
Kononenko, I .
MACHINE LEARNING, 2003, 53 (1-2) :23-69
[15]   Effect of storage on protein concentration of tear samples [J].
Sitaramamma, T ;
Shivaji, S ;
Rao, GN .
CURRENT EYE RESEARCH, 1998, 17 (10) :1027-1035
[16]   Mass spectrometry and partial least-squares regression: a tool for identification of wheat variety and end-use quality [J].
Sorensen, HA ;
Petersen, MK ;
Jacobsen, S ;
Sondergaard, I .
JOURNAL OF MASS SPECTROMETRY, 2004, 39 (06) :607-612
[17]  
VAPNIK V.N., 1995, NATURE STAT LEARNING