Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila

被引:202
作者
Bushati, Natascha [1 ,2 ]
Stark, Alexander [1 ]
Brennecke, Julius [1 ]
Cohen, Stephen M. [1 ,2 ,3 ]
机构
[1] European Mol Biol Lab, Dev Biol Programme, D-69117 Heidelberg, Germany
[2] Temasek Life Sci Lab, Singapore 117604, Singapore
[3] Natl Univ Singapore, Dept Biol Sci, Singapore 117604, Singapore
关键词
D O I
10.1016/j.cub.2008.02.081
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During oogenesis, female animals load their eggs with messenger RNAs (mRNAs) that will be translated to produce new proteins in the developing embryo. Some of these maternally provided mRNAs are stable and continue to contribute to development long after the onset of transcription of the embryonic (zygotic) genome. However, a subset of maternal mRNAs are degraded during the transition from purely maternal to mixed maternal-zygotic gene expression. In Drosophila, two independent RNA degradation pathways are used to promote turnover of maternal transcripts during the maternal-to-zygotic transition [1]. The first is driven by maternally encoded factors, including SMAUG [2], whereas the second is activated about 2 hr after fertilization, coinciding with the onset of zygotic transcription. Here, we report that a cluster of zygotically expressed microRNAs (miRNAs) targets maternal mRNAs for turnover, as part of the zygotic degradation pathway. miRNAs are small noncoding RNAs that silence gene expression by repressing translation of their target mRNAs and by promoting mRNA turnover. Intriguingly, use of miRNAs to promote mRNA turnover during the maternal-to-zygotic transition appears to be a conserved phenomenon because a comparable role was reported for miR-430 in zebrafish [3]. The finding that unrelated miRNAs regulate the maternal to zygotic transition in different animals suggests convergent evolution.
引用
收藏
页码:501 / 506
页数:6
相关论文
共 22 条
[1]   Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development [J].
Aboobaker, AA ;
Tomancak, P ;
Patel, N ;
Rubin, GM ;
Lai, EC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (50) :18017-18022
[2]   Gene expression during the life cycle of Drosophila melanogaster [J].
Arbeitman, MN ;
Furlong, EEM ;
Imam, F ;
Johnson, E ;
Null, BH ;
Baker, BS ;
Krasnow, MA ;
Scott, MP ;
Davis, RW ;
White, KP .
SCIENCE, 2002, 297 (5590) :2270-2275
[3]   Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster [J].
Bashirullah, A ;
Halsell, SR ;
Cooperstock, RL ;
Kloc, M ;
Karaiskakis, A ;
Fisher, WW ;
Fu, WL ;
Hamilton, JK ;
Etkin, LD ;
Lipshitz, HD .
EMBO JOURNAL, 1999, 18 (09) :2610-2620
[4]   Spatial regulation of microRNA gene expression in the Drosophila embryo [J].
Biemar, F ;
Zinzen, R ;
Ronshaugen, M ;
Sementchenko, V ;
Manak, JR ;
Levine, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (44) :15907-15911
[5]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[6]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[7]   MicroRNA functions [J].
Bushati, Natascha ;
Cohen, Stephen M. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2007, 23 :175-205
[8]   Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs [J].
Giraldez, AJ ;
Mishima, Y ;
Rihel, J ;
Grocock, RJ ;
Van Dongen, S ;
Inoue, K ;
Enright, AJ ;
Schier, AF .
SCIENCE, 2006, 312 (5770) :75-79
[9]   Ends-out, or replacement, gene targeting in Drosphila [J].
Gong, WJ ;
Golic, KG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2556-2561
[10]   Summaries of affymetrix GeneChip probe level data [J].
Irizarry, RA ;
Bolstad, BM ;
Collin, F ;
Cope, LM ;
Hobbs, B ;
Speed, TP .
NUCLEIC ACIDS RESEARCH, 2003, 31 (04) :e15