Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development

被引:203
作者
Aboobaker, AA
Tomancak, P
Patel, N
Rubin, GM
Lai, EC
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
基金
英国惠康基金;
关键词
in situ hybridization; nascent transcript;
D O I
10.1073/pnas.0508823102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are an extensive class of regulatory RNA whose specific functions in animals are generally unknown. Although computational methods have identified many potential targets of miRNAs, elucidating the spatial expression patterns of miRNAs is necessary to identify the sites of miRNA action. Here, we report the spatial patterns of miRNA transcription during Drosophila embryonic development, as revealed by in situ hybridization to nascent miRNA transcripts. We detect expression of 15 "standalone" miRNA loci and 9 intronic miRNA loci, which collectively represent 38 miRNA genes. We observe great variety in the spatial patterns of miRNA transcription, including preblastoderm stripes, in aspects of the central and peripheral nervous systems, and in cellular subsets of the mesoderm and endoderm. We also describe an intronic miRNA (miR-7) whose expression pattern is distinct from that of its host mRNA (bancal), which demonstrates that intronic miRNAs can be subject to independent cis-regulatory control. Intriguingly, the expression patterns of several fly miRNAs are analogous to those of their vertebrate counterparts, suggesting that these miRNAs may have ancient roles in animal patterning.
引用
收藏
页码:18017 / 18022
页数:6
相关论文
共 38 条
  • [1] Abdelilah-Seyfried S, 2000, GENETICS, V155, P733
  • [2] The small RNA profile during Drosophila melanogaster development
    Aravin, AA
    Lagos-Quintana, M
    Yalcin, A
    Zavolan, M
    Marks, D
    Snyder, B
    Gaasterland, T
    Meyer, J
    Tuschl, T
    [J]. DEVELOPMENTAL CELL, 2003, 5 (02) : 337 - 350
  • [3] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [4] Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes
    Baskerville, S
    Bartel, DP
    [J]. RNA, 2005, 11 (03) : 241 - 247
  • [5] Dicer is essential for mouse development
    Bernstein, E
    Kim, SY
    Carmell, MA
    Murchison, EP
    Alcorn, H
    Li, MZ
    Mills, AA
    Elledge, SJ
    Anderson, KV
    Hannon, GJ
    [J]. NATURE GENETICS, 2003, 35 (03) : 215 - 217
  • [6] bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila
    Brennecke, J
    Hipfner, DR
    Stark, A
    Russell, RB
    Cohen, SM
    [J]. CELL, 2003, 113 (01) : 25 - 36
  • [7] MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode
    Chang, S
    Johnston, RJ
    Frokjær-Jensen, C
    Lockery, S
    Hobert, O
    [J]. NATURE, 2004, 430 (7001) : 785 - 789
  • [8] The levels of the bancal product, a Drosophila homologue of vertebrate hnRNP K protein, affect cell proliferation and apoptosis in imaginal disc cells
    Charroux, B
    Angelats, C
    Fasano, L
    Kerridge, S
    Vola, C
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1999, 19 (11) : 7846 - 7856
  • [9] MicroRNAs modulate hematopoietic lineage differentiation
    Chen, CZ
    Li, L
    Lodish, HF
    Bartel, DP
    [J]. SCIENCE, 2004, 303 (5654) : 83 - 86
  • [10] CHARACTERIZATION OF 2 RNAS TRANSCRIBED FROM THE CIS-REGULATORY REGION OF THE ABD-A DOMAIN WITHIN THE DROSOPHILA BITHORAX COMPLEX
    CUMBERLEDGE, S
    ZARATZIAN, A
    SAKONJU, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (09) : 3259 - 3263