Oxidative stress and the etiology of insulin resistance and type 2 diabetes

被引:438
作者
Henriksen, Erik J. [1 ]
Diamond-Stanic, Maggie K. [1 ]
Marchionne, Elizabeth M. [1 ]
机构
[1] Univ Arizona, Muscle Metab Lab, Dept Physiol, Coll Med, Tucson, AZ 85721 USA
基金
美国国家卫生研究院;
关键词
Hydrogen peroxide; Skeletal muscle; Glucose transport; Obese Zucker rat; Lipoic acid; Free radicals; ALPHA-LIPOIC ACID; MUSCLE GLUCOSE-TRANSPORT; ACTIVATED SIGNALING PATHWAYS; RAT SKELETAL-MUSCLE; ANGIOTENSIN-II; INHIBITOR PYRIDOXAMINE; ADVANCED GLYCATION; PROTEIN-KINASE; GLUT4; TRANSLOCATION; OXIDANT STRESS;
D O I
10.1016/j.freeradbiomed.2010.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The condition of oxidative stress arises when oxidant production exceeds antioxidant activity in cells and plasma. The overabundance of oxidants is mechanistically connected to the multifactorial etiology of insulin resistance, primarily in skeletal muscle tissue, and the subsequent development of type 2 diabetes. Two important mechanisms for this oxidant excess are (1) the mitochondrial overproduction of hydrogen peroxide and superoxide ion under conditions of energy surplus and (2) the enhanced activation of cellular NADPH oxidase via angiotensin II receptors. Several recent studies are reviewed that support the concept that direct exposure of mammalian skeletal muscle to an oxidant stress (including hydrogen peroxide) results in stimulation of the serine kinase p38 mitogen-activated protein kinase (p38 MAPK), and that the engagement of this stress-activated p38 MAPK signaling is mechanistically associated with diminished insulin-dependent stimulation of insulin signaling elements and glucose transport activity. The beneficial interactions between the antioxidant alpha-lipoic acid and the advanced glycation end-product inhibitor pyridoxamine that ameliorate oxidant stress-associated defects in whole-body and skeletal-muscle insulin action in the obese Zucker rat, a model of prediabetes, are also addressed. Overall, this review highlights the importance of oxidative stress in the development of insulin resistance in mammalian skeletal muscle tissue, at least in part via a p38-MAPK-dependent mechanism, and indicates that interventions that reduce this oxidative stress and oxidative damage can improve insulin action in insulin-resistant animal models. Strategies to prevent and ameliorate oxidative stress remain important in the overall treatment of insulin resistance and type 2 diabetes. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:993 / 999
页数:7
相关论文
共 92 条
[1]   The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats [J].
Alderson, NL ;
Chachich, ME ;
Youssef, NN ;
Beattie, RJ ;
Nachtigal, M ;
Thorpe, SR ;
Baynes, JW .
KIDNEY INTERNATIONAL, 2003, 63 (06) :2123-2133
[3]   Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans [J].
Anderson, Ethan J. ;
Lustig, Mary E. ;
Boyle, Kristen E. ;
Woodlief, Tracey L. ;
Kane, Daniel A. ;
Lin, Chien-Te ;
Price, Jesse W., III ;
Kang, Li ;
Rabinovitch, Peter S. ;
Szeto, Hazel H. ;
Houmard, Joseph A. ;
Cortright, Ronald N. ;
Wasserman, David H. ;
Neufer, P. Darrell .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :573-581
[4]   Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: Role of p38 MAPK [J].
Archuleta, Tara L. ;
Lemieux, Andrew M. ;
Saengsirisuwan, Vitoon ;
Teachey, Mary K. ;
Lindborg, Katherine A. ;
Kim, John S. ;
Henriksen, Erik J. .
FREE RADICAL BIOLOGY AND MEDICINE, 2009, 47 (10) :1486-1493
[5]   RATES AND TISSUE SITES OF NON-INSULIN-MEDIATED AND INSULIN-MEDIATED GLUCOSE-UPTAKE IN HUMANS [J].
BARON, AD ;
BRECHTEL, G ;
WALLACE, P ;
EDELMAN, SV .
AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 255 (06) :E769-E774
[6]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[7]   Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression [J].
Blendea, MC ;
Jacobs, D ;
Stump, CS ;
McFarlane, SI ;
Ogrin, C ;
Bahtyiar, G ;
Stas, S ;
Kumar, P ;
Sha, Q ;
Ferrario, CM ;
Sowers, JR .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2005, 288 (02) :E353-E359
[8]   Diabetic cardiomyopathy, causes and effects [J].
Boudina, Sihem ;
Abel, Evan Dale .
REVIEWS IN ENDOCRINE & METABOLIC DISORDERS, 2010, 11 (01) :31-39
[9]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[10]   Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport [J].
Cartee, Gregory D. ;
Wojtaszewski, Jorgen F. P. .
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2007, 32 (03) :557-566