Hybrid (composite) electroactive films consisting of such an organic conducting polymer as poly(3,4-ethylenedioxythiophene), PEDOT, and such a polynuclear inorganic compound as amorphous tungsten oxide, WO3/H (x) WO3 were fabricated on carbon electrodes through electrodeposition by voltammetric potential in acid solution containing EDOT monomer and sodium tungstate. Electrostatic interactions between the negatively charged tungstic units (existing within WO3) and the oxidized positively charged conductive polymer (oxidized PEDOT) sites create a robust hybrid structure which cannot be considered as a simple mixture of the organic and inorganic components. It is apparent from scanning electron microscopy that hybrid structures are granular but fairly dense. Because PEDOT and mixed-valence tungsten oxides are electronically conducting, the resulting hybrid films are capable of fast propagation. The reversible and fast redox reactions of tungsten oxide component lie in the potential range where PEDOT matrix is conductive. Furthermore, the hybrid films exhibit good mediating capabilities towards electron transfers between model redox couples such as cationic iron(III,II) and anionic hexacyanoferrate(III,II). Since the films accumulate effectively charge and show high current densities at electrochemical interfaces, they could be of importance to electrocatalysis and to construction of redox capacitors.