The equation of motion for a spin vortex and geometric force

被引:10
作者
Kuratsuji, H [1 ]
Yabu, H [1 ]
机构
[1] TOKYO METROPOLITAN UNIV,DEPT PHYS,HACHIOJI,TOKYO 192,JAPAN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 20期
关键词
D O I
10.1088/0305-4470/29/20/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian equation of motion is studied for a vortex occurring in a two-dimensional Heisenberg ferromagnet of anisotropic type by starting with the effective action for the spin field formulated by the Bloch (or spin) coherent state. The resultant equation shows the existence of a geometric force that is analogous to the so-called Magnus force in superfluids. This specific force plays a significant role in the quantum dynamics of a single vortex, for example the determination of the bound state of the vortex trapped by a pinning force arising from the interaction of the vortex with an impurity.
引用
收藏
页码:6505 / 6513
页数:9
相关论文
共 16 条
[1]   THEORY OF MOTION OF VORTICES IN SUPERCONDUCTORS [J].
BARDEEN, J ;
STEPHEN, MJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1197-+
[2]   FRACTIONAL STATISTICS OF THE VORTEX IN TWO-DIMENSIONAL SUPERFLUIDS [J].
CHIAO, RY ;
HANSEN, A ;
MOULTHROP, AA .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1339-1342
[3]  
CRESWICK J, 1980, PHYS LETT A, V76, P267
[4]   QUANTUM THEORY OF SUPERFLUID VORTICES .I. LIQUID HELIUM 2 [J].
FETTER, AL .
PHYSICAL REVIEW, 1967, 162 (01) :143-+
[5]  
FEYNMAN RP, 1972, STATISTICAL MECHANIC
[6]   VORTICES IN THE CLASSICAL TWO-DIMENSIONAL ANISOTROPIC HEISENBERG-MODEL [J].
GOUVEA, ME ;
WYSIN, GM ;
BISHOP, AR ;
MERTENS, FG .
PHYSICAL REVIEW B, 1989, 39 (16) :11840-11849
[7]  
Inomata A., 1992, PATH INTEGRALS COHER
[8]   QUANTIZED VORTICES IN 2-DIMENSIONAL SUPERFLUIDS AND GENERALIZED HAMILTONIAN-DYNAMICS [J].
KURATSUJI, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1746-1749
[9]   GEOMETRIC CANONICAL PHASE-FACTORS AND PATH-INTEGRALS [J].
KURATSUJI, H .
PHYSICAL REVIEW LETTERS, 1988, 61 (15) :1687-1690
[10]   A PATH INTEGRAL FORMALISM OF COLLECTIVE MOTION [J].
KURATSUJI, H .
PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (01) :224-240