Computational Design of High-Affinity Epitope Scaffolds by Backbone Grafting of a Linear Epitope

被引:79
作者
Azoitei, Mihai L. [1 ]
Ban, Yih-En Andrew [1 ]
Julien, Jean-Philippe [2 ]
Bryson, Steve [2 ,3 ]
Schroeter, Alexandria [1 ]
Kalyuzhniy, Oleksandr [1 ]
Porter, Justin R. [1 ,4 ]
Adachi, Yumiko [1 ]
Baker, David [1 ]
Pai, Emil F. [2 ,3 ,5 ,6 ]
Schief, William R. [1 ,7 ,8 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Toronto, Dept Biochem, Toronto, ON M5G 2L7, Canada
[3] Princess Margaret Hosp, Ontario Canc Inst, Campbell Family Canc Res Inst, Toronto, ON M4X 1K9, Canada
[4] Johns Hopkins Univ, Program Biophys, Baltimore, MD 21218 USA
[5] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2L7, Canada
[6] Univ Toronto, Dept Mol Genet, Toronto, ON M5G 2L7, Canada
[7] Scripps Res Inst, IAVI Neutralizing Antibody Ctr, La Jolla, CA 92037 USA
[8] Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
protein grafting; flexible backbone design; epitope scaffold; immunogen design; PROTEIN-PROTEIN DOCKING; DIFFRACTION DATA; RATIONAL DESIGN; ANTIBODY; 2F5; SIDE-CHAIN; RECOGNITION; LOOP; CONFORMATION; TEMPLATE; LIGANDS;
D O I
10.1016/j.jmb.2011.10.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computational grafting of functional motifs onto scaffold proteins is a promising way to engineer novel proteins with pre-specified functionalities. Typically, protein grafting involves the transplantation of protein side chains from a functional motif onto structurally homologous regions of scaffold proteins. Using this approach, we previously transplanted the human immunodeficiency virus 2F5 and 4E10 epitopes onto heterologous proteins to design novel "epitope-scaffold" antigens. However, side-chain grafting is limited by the availability of scaffolds with compatible backbone for a given epitope structure and offers no route to modify backbone structure to improve mimicry or binding affinity. To address this, we report here a new and more aggressive computational method-backbone grafting of linear motifs-that transplants the backbone and side chains of linear functional motifs onto scaffold proteins. To test this method, we first used side-chain grafting to design new 2F5 epitope scaffolds with improved biophysical characteristics. We then independently transplanted the 2F5 epitope onto three of the same parent scaffolds using the newly developed backbone grafting procedure. Crystal structures of side-chain and backbone grafting designs showed close agreement with both the computational models and the desired epitope structure. In two cases, backbone grafting scaffolds bound antibody 2F5 with 30- and 9-fold higher affinity than corresponding side-chain grafting designs. These results demonstrate that flexible backbone methods for epitope grafting can significantly improve binding affinities over those achieved by fixed backbone methods alone. Backbone grafting of linear motifs is a general method to transplant functional motifs when backbone remodeling of the target scaffold is necessary. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 192
页数:18
相关论文
共 43 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[2]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[3]   Crystallographic Definition of the Epitope Promiscuity of the Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5: Vaccine Design Implications [J].
Bryson, Steve ;
Julien, Jean-Philippe ;
Hynes, Rosemary C. ;
Pai, Emil F. .
JOURNAL OF VIROLOGY, 2009, 83 (22) :11862-11875
[4]   Cyclic coordinate descent: A robotics algorithm for protein loop closure [J].
Canutescu, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (05) :963-972
[5]   Concerted evolution of structure and function in a miniature protein [J].
Chin, JW ;
Schepartz, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) :2929-2930
[6]   A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains [J].
Cobos, ES ;
Pisabarro, MT ;
Vega, MC ;
Lacroix, E ;
Serrano, L ;
Ruiz-Sanz, J ;
Martinez, JC .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 342 (01) :355-365
[7]   Computational Protein Design Using Flexible Backbone Remodeling and Resurfacing: Case Studies in Structure-Based Antigen Design [J].
Correia, Bruno E. ;
Ban, Yih-En Andrew ;
Friend, Della J. ;
Ellingson, Katharine ;
Xu, Hengyu ;
Boni, Erica ;
Bradley-Hewitt, Tyler ;
Bruhn-Johannsen, Jessica F. ;
Stamatatos, Leonidas ;
Strong, Roland K. ;
Schief, William R. .
JOURNAL OF MOLECULAR BIOLOGY, 2011, 405 (01) :284-297
[8]   Computational Design of Epitope-Scaffolds Allows Induction of Antibodies Specific for a Poorly Immunogenic HIV Vaccine Epitope [J].
Correia, Bruno E. ;
Ban, Yih-En Andrew ;
Holmes, Margaret A. ;
Xu, Hengyu ;
Ellingson, Katharine ;
Kraft, Zane ;
Carrico, Chris ;
Boni, Erica ;
Sather, D. Noah ;
Zenobia, Camille ;
Burke, Katherine Y. ;
Bradley-Hewitt, Tyler ;
Bruhn-Johannsen, Jessica F. ;
Kalyuzhniy, Oleksandr ;
Baker, David ;
Strong, Roland K. ;
Stamatatos, Leonidas ;
Schief, William R. .
STRUCTURE, 2010, 18 (09) :1116-1126
[9]  
Domingues H, 1999, NAT STRUCT BIOL, V6, P652
[10]   Changing the structural context of a functional beta-hairpin - Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold [J].
Drakopoulou, E ;
ZinnJustin, S ;
Guenneugues, M ;
Gilquin, B ;
Menez, A ;
Vita, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (20) :11979-11987