Analysis of membrane-localized binding kinetics with FRAP

被引:15
作者
Dushek, Omer [1 ,2 ]
Das, Raibatak [2 ,3 ]
Coombs, Daniel [1 ,2 ]
机构
[1] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z2, Canada
来源
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS | 2008年 / 37卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
fluorescence recovery after photobleaching; surface binding kinetics; mathematical model; ligand-receptor binding; FRAP;
D O I
10.1007/s00249-008-0286-z
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Interactions between plasma membrane-associated proteins on interacting cells are critical for many important biological processes. Few experimental techniques, however, can accurately determine the association and the dissociation rates between such interacting pairs when the two molecules diffuse on apposing membranes or lipid bilayers. In this study, we give a theoretical description of how and when fluorescence recovery after photobleaching (FRAP) experiments can be used to quantify these reaction rates. We analyze the effect of binding on FRAP recovery curves with a reaction-diffusion model and systematically identify different regimes in the parameter space of the association and the dissociation constants for which the full model simplifies into equivalent one-parameter models. Based on this analysis, we propose an experimental protocol that may be used to identify the kinetic parameters of binding in the appropriate parameter regime. We present simulated experiments illustrating our protocol and lay down guidelines for parameter estimation.
引用
收藏
页码:627 / 638
页数:12
相关论文
共 38 条
[1]  
Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15
[2]   MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS [J].
AXELROD, D ;
KOPPEL, DE ;
SCHLESSINGER, J ;
ELSON, E ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1976, 16 (09) :1055-1069
[3]   Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins [J].
Beaudouin, JL ;
Mora-Bermúdez, F ;
Klee, T ;
Daigle, N ;
Ellenberg, J .
BIOPHYSICAL JOURNAL, 2006, 90 (06) :1878-1894
[4]   Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes [J].
Braga, J ;
Desterro, JMP ;
Carmo-Fonseca, M .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (10) :4749-4760
[5]   A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching [J].
Braga, Jose ;
McNally, James G. ;
Carmo-Fonseca, Maria .
BIOPHYSICAL JOURNAL, 2007, 92 (08) :2694-2703
[6]   The immunological synapse and CD28-CD80 interactions [J].
Bromley, SK ;
Iaboni, A ;
Davis, SJ ;
Whitty, A ;
Green, JM ;
Shaw, AS ;
Weiss, A ;
Dustin, ML .
NATURE IMMUNOLOGY, 2001, 2 (12) :1159-1166
[7]   Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling [J].
Campi, G ;
Varma, R ;
Dustin, ML .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (08) :1031-1036
[8]   Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins [J].
Carrero, G ;
McDonald, D ;
Crawford, E ;
de Vries, G ;
Hendzel, MJ .
METHODS, 2003, 29 (01) :14-28
[9]   T cell activation: Kinetic proofreading, serial engagement and cell adhesion [J].
Coombs, D ;
Goldstein, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 184 (01) :121-139
[10]   Dynamics of cell surface molecules during T cell recognition [J].
Davis, MM ;
Krogsgaard, M ;
Huppa, JB ;
Sumen, C ;
Purbhoo, MA ;
Irvine, DJ ;
Wu, LC ;
Ehrlich, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :717-742