The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis

被引:117
作者
Badenhorst, P
Xiao, H
Cherbas, L
Kwon, SY
Voas, M
Rebay, I
Cherbas, P
Wu, C [1 ]
机构
[1] NCI, Lab Mol Cell Biol, NIH, Bethesda, MD 20814 USA
[2] Univ Birmingham, Dept Anat, Inst Biomed Res, Birmingham B15 2TT, W Midlands, England
[3] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[4] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA
[5] MIT, Whitehead Inst, Cambridge, MA 02142 USA
基金
英国惠康基金;
关键词
NURF; chromatin remodeling; chromatin; Drosophila; ecdysteroid; ISWI;
D O I
10.1101/gad.1342605
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Drosophila NURF is an ISWI-containing ATP-dependent chromatin remodeling complex that regulates transcription by catalyzing nucleosome sliding. To determine in vivo gene targets of NURF, we performed whole genome expression analysis on mutants lacking the NURF-specific subunit NURF301. Strikingly, a large set of ecdysone-responsive targets is included among several hundred NURF-regulated genes. Null Nurf301 mutants do not undergo larval to pupal metamorphosis, and also enhance dominant-negative mutations in ecdysone receptor. Moreover, purified NURF binds EcR in an ecdysone-dependent manner, suggesting it is a direct effector of nuclear receptor activity. The conservation of NURF in mammals has broad implications for steroid signaling.
引用
收藏
页码:2540 / 2545
页数:6
相关论文
共 41 条
  • [11] Multiple roles for ISWI in transcription, chromosome organization and DNA replication
    Corona, DFV
    Tamkun, JW
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2004, 1677 (1-3): : 113 - 119
  • [12] Structure and specificity of nuclear receptor-coactivator interactions
    Darimont, BD
    Wagner, RL
    Apriletti, JW
    Stallcup, MR
    Kushner, PJ
    Baxter, JD
    Fletterick, RJ
    Yamamoto, KR
    [J]. GENES & DEVELOPMENT, 1998, 12 (21) : 3343 - 3356
  • [13] The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo
    Deuring, R
    Fanti, L
    Armstrong, JA
    Sarte, M
    Papoulas, O
    Prestel, M
    Daubresse, G
    Verardo, M
    Moseley, SL
    Berloco, M
    Tsukiyama, T
    Wu, C
    Pimpinelli, S
    Tamkun, JW
    [J]. MOLECULAR CELL, 2000, 5 (02) : 355 - 365
  • [14] Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes
    Di Croce, L
    Koop, R
    Venditti, P
    Westphal, HM
    Nightingale, KP
    Corona, DFV
    Becker, PB
    Beato, M
    [J]. MOLECULAR CELL, 1999, 4 (01) : 45 - 54
  • [15] ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR in vitro
    Dilworth, FJ
    Fromental-Ramain, C
    Yamamoto, K
    Chambon, P
    [J]. MOLECULAR CELL, 2000, 6 (05) : 1049 - 1058
  • [16] Histone and chromatin cross-talk
    Fischle, W
    Wang, YM
    Allis, CD
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) : 172 - 183
  • [17] FLETCHER JC, 1995, DEVELOPMENT, V121, P1455
  • [18] Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex
    Fryer, CJ
    Archer, TK
    [J]. NATURE, 1998, 393 (6680) : 88 - 91
  • [19] Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo
    Fyodorov, DV
    Blower, MD
    Karpen, GH
    Kadonaga, JT
    [J]. GENES & DEVELOPMENT, 2004, 18 (02) : 170 - 183
  • [20] Nuclear receptor coactivators
    Glass, CK
    Rose, DW
    Rosenfeld, MG
    [J]. CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (02) : 222 - 232