Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis

被引:105
作者
Sauer, H
Wartenberg, M
机构
[1] Univ Giessen, Dept Physiol, D-35392 Giessen, Germany
[2] GKSS Forschungszentrum Geesthacht GmbH, Dept Cell Biol, Teltow, Germany
关键词
D O I
10.1089/ars.2005.7.1423
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Besides the well known pathophysiological impact of oxidative stress in cardiovascular disease, reactive oxygen species (ROS) generated at low concentrations exert a role as signaling molecules that are involved in signal transduction cascades of numerous growth factor-, cytokine-, and hormone-mediated pathways, and regulate biological effects such as apoptosis, cell proliferation, and differentiation. Embryonic stem cells have the capacity to differentiate into the cardiovascular cell lineage. Furthermore, upon confrontation culture with tumor tissue, they form blood vessel-like structures that induce tumor-induced angiogenesis within tumor tissues. The role of ROS in cardiovascular differentiation of embryonic stem cells appears to be antagonistic. Whereas continuous exposure to ROS results in inhibition of cardiomyogenesis and vasculogenesis, pulse-chase exposure to low-level ROS enhances differentiation toward the cardiomyogenic as well as vascular cell lineage. This review summarizes the current knowledge of ROS-induced cardiovascular differentiation of embryonic stem cells as well as the role of ROS in tumor-induced angiogenesis.
引用
收藏
页码:1423 / 1434
页数:12
相关论文
共 130 条
[1]   Functional expression and regulation of the hyperpolarization activated non-selective cation current in embryonic stem cell-derived cardiomyocytes [J].
Abi-Gerges, N ;
Ji, GJ ;
Lu, ZJ ;
Fischmeister, R ;
Hescheler, J ;
Fleischmann, BK .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 523 (02) :377-389
[2]   Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IκB/NF-κB [J].
Abid, MR ;
Schoots, IG ;
Spokes, KC ;
Wu, SQ ;
Mawhinney, C ;
Aird, WC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (42) :44030-44038
[3]   NADPH oxidase activity is required for endothelial cell proliferation and migration [J].
Abid, MR ;
Kachra, Z ;
Spokes, KC ;
Aird, WC .
FEBS LETTERS, 2000, 486 (03) :252-256
[4]   Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+ [J].
Al-Mehdi, AB ;
Zhao, GC ;
Dodia, C ;
Tozawa, K ;
Costa, K ;
Muzykantov, V ;
Ross, C ;
Blecha, F ;
Dinauer, M ;
Fisher, AB .
CIRCULATION RESEARCH, 1998, 83 (07) :730-737
[5]   OXIDATIVE INFLUENCE ON DEVELOPMENT AND DIFFERENTIATION - AN OVERVIEW OF A FREE-RADICAL THEORY OF DEVELOPMENT [J].
ALLEN, RG ;
BALIN, AK .
FREE RADICAL BIOLOGY AND MEDICINE, 1989, 6 (06) :631-661
[6]   Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes [J].
Amin, JK ;
Xiao, L ;
Pimental, DR ;
Pagano, PJ ;
Singh, K ;
Sawyer, DB ;
Colucci, WS .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2001, 33 (01) :131-139
[7]   Reactive oxygen generated by Nox1 triggers the angiogenic switch [J].
Arbiser, JL ;
Petros, J ;
Klafter, R ;
Govindajaran, B ;
McLaughlin, ER ;
Brown, LF ;
Cohen, C ;
Moses, M ;
Kilroy, S ;
Arnold, RS ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :715-720
[8]   Two novel proteins activate superoxide generation by the NADPH oxidase NOX1 [J].
Bánfi, B ;
Clark, RA ;
Steger, K ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (06) :3510-3513
[9]   Stem cell differentiation requires a paracrine pathway in the heart [J].
Behfar, A ;
Zingman, LV ;
Hodgson, DM ;
Rauzier, JM ;
Kane, GC ;
Terzic, A ;
Pucéat, M .
FASEB JOURNAL, 2002, 16 (12) :1558-1566
[10]   Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells [J].
BelAiba, RS ;
Djordjevic, T ;
Bonello, S ;
Flügel, D ;
Hess, J ;
Kietzmann, T ;
Görlach, A .
BIOLOGICAL CHEMISTRY, 2004, 385 (3-4) :249-257