Intergenic and Repeat Transcription in Human, Chimpanzee and Macaque Brains Measured by RNA-Seq

被引:46
作者
Xu, Augix Guohua [1 ,2 ]
He, Liu [1 ,3 ]
Li, Zhongshan [1 ,3 ]
Xu, Ying [1 ]
Li, Mingfeng [1 ]
Fu, Xing [1 ]
Yan, Zheng [1 ]
Yuan, Yuan [1 ]
Menzel, Corinna [4 ]
Li, Na [5 ]
Somel, Mehmet [1 ,2 ]
Hu, Hao [1 ,4 ]
Chen, Wei [4 ,5 ]
Paabo, Svante [2 ]
Khaitovich, Philipp [1 ,2 ]
机构
[1] Partner Inst Computat Biol, Shanghai, Peoples R China
[2] Max Planck Inst Evolutionary Anthropol, Leipzig, Germany
[3] Chinese Acad Sci, Grad Sch, Shanghai, Peoples R China
[4] Max Planck Inst Mol Genet, Berlin, Germany
[5] Berlin Inst Med Syst Biol, Max Delbruck Centrum Mol Med, Berlin, Germany
关键词
3' UNTRANSLATED REGIONS; GENE-EXPRESSION; NONCODING RNAS; MESSENGER-RNAS; EVOLUTION; PATTERNS; REVEALS; DATABASE;
D O I
10.1371/journal.pcbi.1000843
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcription is the first step connecting genetic information with an organism's phenotype. While expression of annotated genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of transcripts located outside of the known genes' boundaries is limited. Here, we use high-throughput transcriptome sequencing (RNA-Seq) to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque brain. In all species, only 20-28% of non-ribosomal transcripts correspond to annotated exons and 20-23% to introns. By contrast, transcripts originating within intronic and intergenic repetitive sequences constitute 40-48% of the total brain transcriptome. Notably, some repeat families show elevated transcription. In non-repetitive intergenic regions, we identify and characterize 1,093 distinct regions highly expressed in the human brain. These regions are conserved at the RNA expression level across primates studied and at the DNA sequence level across mammals. A large proportion of these transcripts (20%) represents 3'UTR extensions of known genes and may play roles in alternative microRNA-directed regulation. Finally, we show that while transcriptome divergence between species increases with evolutionary time, intergenic transcripts show more expression differences among species and exons show less. Our results show that many yet uncharacterized evolutionary conserved transcripts exist in the human brain. Some of these transcripts may play roles in transcriptional regulation and contribute to evolution of human-specific phenotypic traits.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [2] Aligning multiple genomic sequences with the threaded blockset aligner
    Blanchette, M
    Kent, WJ
    Riemer, C
    Elnitski, L
    Smit, AFA
    Roskin, KM
    Baertsch, R
    Rosenbloom, K
    Clawson, H
    Green, ED
    Haussler, D
    Miller, W
    [J]. GENOME RESEARCH, 2004, 14 (04) : 708 - 715
  • [3] A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    Bolstad, BM
    Irizarry, RA
    Åstrand, M
    Speed, TP
    [J]. BIOINFORMATICS, 2003, 19 (02) : 185 - 193
  • [4] Elevated gene expression levels distinguish human from non-human primate brains
    Cáceres, M
    Lachuer, J
    Zapala, MA
    Redmond, JC
    Kudo, L
    Geschwind, DH
    Lockhart, DJ
    Preuss, TM
    Barlow, C
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) : 13030 - 13035
  • [5] Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
    Chi, Sung Wook
    Zang, Julie B.
    Mele, Aldo
    Darnell, Robert B.
    [J]. NATURE, 2009, 460 (7254) : 479 - 486
  • [6] Intra- and interspecific variation in primate gene expression patterns
    Enard, W
    Khaitovich, P
    Klose, J
    Zöllner, S
    Heissig, F
    Giavalisco, P
    Nieselt-Struwe, K
    Muchmore, E
    Varki, A
    Ravid, R
    Doxiadis, GM
    Bontrop, RE
    Pääbo, S
    [J]. SCIENCE, 2002, 296 (5566) : 340 - 343
  • [7] The regulated retrotransposon transcriptome of mammalian cells
    Faulkner, Geoffrey J.
    Kimura, Yasumasa
    Daub, Carsten O.
    Wani, Shivangi
    Plessy, Charles
    Irvine, Katharine M.
    Schroder, Kate
    Cloonan, Nicole
    Steptoe, Anita L.
    Lassmann, Timo
    Waki, Kazunori
    Hornig, Nadine
    Arakawa, Takahiro
    Takahashi, Hazuki
    Kawai, Jun
    Forrest, Alistair R. R.
    Suzuki, Harukazu
    Hayashizaki, Yoshihide
    Hume, David A.
    Orlando, Valerio
    Grimmond, Sean M.
    Carninci, Piero
    [J]. NATURE GENETICS, 2009, 41 (05) : 563 - 571
  • [8] Expression profiling in primates reveals a rapid evolution of human transcription factors
    Gilad, Y
    Oshlack, A
    Smyth, GK
    Speed, TP
    White, KP
    [J]. NATURE, 2006, 440 (7081) : 242 - 245
  • [9] Evolutionary history of mammalian transposons determined by genome-wide defragmentation
    Giordano, Joti
    Ge, Yongchao
    Gelfand, Yevgeniy
    Abrusan, Gyoergy
    Benson, Gary
    Warburton, Peter E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (07) : 1321 - 1334
  • [10] Induced gene expression in human brain after the split from chimpanzee
    Gu, JY
    Gu, X
    [J]. TRENDS IN GENETICS, 2003, 19 (02) : 63 - 65