Exact energy bands and Fermi surfaces of separable Abelian potentials

被引:6
作者
Belokolos, ED
Eilbeck, JC
Enolskii, VZ
Salerno, M
机构
[1] NASU, Inst Magnet, Dept Theoret Phys, UA-03142 Kiev, Ukraine
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Salerno, Dipartimento Sci Fis ER Caianiello, I-84081 Baronissi, SA, Italy
[4] INFM, Unita Salerno, I-84081 Baronissi, SA, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 05期
关键词
D O I
10.1088/0305-4470/34/5/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general theory for multidimensional Schrodinger equations with separable Abelian potentials with an arbitrary number of gaps in the spectrum. In particular, we derive general equations which allow one to express the energy and the wavevectors in the Brillouin zone as a function of the spectral parameters. By using the solutions of these equations, we show how to construct the energy bands and the Fermi surfaces in the first Brillouin zone of the reciprocal lattice. As illustrative examples we consider the case of two-dimensional separable potentials with one, two and three gaps in the spectrum. The method can be applied to crystals with a cubic or a rectangular parallelogram Wigner-Seitz cell in arbitrary dimensions. The possibility to generalize the theory to other crystal symmetries is also briefly discussed.
引用
收藏
页码:943 / 959
页数:17
相关论文
共 26 条
[1]   VOLTAGE-TUNABLE QUANTUM DOTS ON SILICON [J].
ALSMEIER, J ;
BATKE, E ;
KOTTHAUS, JP .
PHYSICAL REVIEW B, 1990, 41 (03) :1699-1702
[2]  
[Anonymous], 1964, INT SERIES MONOGRAPH
[3]  
ARSCOTT FM, 1962, MATH TALBES SERIES, V17
[4]   A NEW METHOD FOR CALCULATING THE ELECTRON SPECTRUM IN SOLIDS - APPLICATION TO HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BARYAKHTAR, VG ;
BELOKOLOS, ED ;
KOROSTIL, AM .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 169 (01) :105-114
[5]  
BARYAKHTAR VG, 1993, PHYS MET METALLOGR, V12, P829
[6]  
BARYSHNIKOV AY, 1993, EKSP ONKOL, V15, P3
[7]  
BELOKOLOS ED, 1994, ALBEBRO GEOMETRICAL
[8]   About the Quantum mechanics of Electrons in Crystal lattices. [J].
Bloch, Felix .
ZEITSCHRIFT FUR PHYSIK, 1929, 52 (7-8) :555-600
[9]  
BUCHSTABER VM, 2000, UNPUB MULTIDIMENSION
[10]   ELLIPTIC BAKER-AKHIEZER FUNCTIONS AND AN APPLICATION TO AN INTEGRABLE DYNAMICAL SYSTEM [J].
EILBECK, JC ;
ENOLSKII, VZ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (03) :1192-1201